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Abstract—Nonlinear dynamical probabilistic latent vari-
able model (NDPLVM) and its variants, essential in indus-
trial inferential sensors, face challenges in latent space
inference and deep learning (DL) backend implementation.
The first issue arises from the assumption that covari-
ates directly infer the latent variable, potentially leading
to inaccuracies. The second issue involves the discrep-
ancy between the probabilistic distribution function form
of NDPLVMs and data sample-based operation of DL back-
ends. Addressing these, this study introduces the optimal
control-NDPLVM (OC-NDPLVM), a model designed to en-
hance performance by analyzing NDPLVMs learning and
tackling these issues. For the first problem, NDPLVMs’
learning is reinterpreted as an optimization problem, solved
by alternating direction method of multipliers, and selecting
the inference network’s input via studying optimal solu-
tion’s structure. To address the second issue, OC-NDPLVM
adapts mean and covariance equations for compatibility
with DL backends. This model’s effectiveness is validated
through experiments on inferential sensor datasets.
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abilistic latent variable model (PLVM), variational inference.

Manuscript received 25 April 2024; revised 20 June 2024; accepted
16 July 2024. This work was supported in part by the National Nat-
ural Science Foundation of China under Grant 61933013 and Grant
92167106, in part by the National Science and Technology Major Project
of China under Grant 2022ZD0120001, and in part by the Jiangsu
Provincial Scientific Research Center of Applied Mathematics under
Grant BK20233002. Paper no. TII-24-1963. (Corresponding authors:
Zhiqiang Ge; Zhihuan Song.)

Zhichao Chen and Zhihuan Song are with the Guangdong Provincial
Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guang-
dong University of Petrochemical Technology, Maoming 525000, China,
and also with the State Key Laboratory of Industrial Control Technol-
ogy, College of Control Science and Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: 12032042@zju.edu.cn; songzhihuan
@zju.edu.cn).

Hao Wang, Guofei Chen, and Yiran Ma are with the State Key Lab-
oratory of Industrial Control Technology, College of Control Science
and Engineering, Zhejiang University, Hangzhou 310027, China (e-mail:
22032130@zju.edu.cn; gfchen@zju.edu.cn; mayiran@zju.edu.cn).

Le Yao is with the School of Mathematics, Hangzhou Normal Univer-
sity, Hangzhou 311121, China, and also with the Qinting Data and Intel-
ligence Company, Ltd., Hangzhou 311121, China (e-mail: yaole@hznu.
edu.cn).

Zhiqiang Ge is with the School of Mathematics, Southeast University,
Nanjing 210096, China (e-mail: zhiqiang.ge@hotmail.com).

This article has supplementary material provided by the au-
thors and color versions of one or more figures available at
https://doi.org/10.1109/TII.2024.3435466.

Digital Object Identifier 10.1109/TII.2024.3435466

I. INTRODUCTION

IN INDUSTRIAL manufacturing, accurately inferring hard-
to-measure quality variables (labels) from easy-to-measure

process variables (covariates) are crucial for applications such as
energy consumption estimation and product quality control [1].
Probabilistic latent variable models (PLVMs) and its variants [2]
excel in this area. These models effectively compress spatial(-
temporal) patterns into a low-dimensional, (Markovian latent
space,) gaining popularity due to their superior ability to capture
the nonlinearity, evolution, and uncertainty inherent in the data.

Initially designed for unsupervised learning tasks, PLVMs
have gradually been applied to inferential sensor tasks, which are
categorized as (semi-)supervised learning tasks based on refer-
ence [3] by concatenating covariates and labels as observational
data. It should be pointed out that, conventional PLVMs like
probabilistic principal component analysis, probabilistic factor
analysis, and probabilistic independent component analysis,
however, struggle to adapt to multimodal industrial data due
to the reliance on the unimodal assumption of observational
data. To alleviate this issue, researchers have explored the use of
finite mixture model-based approaches [4], converting PLVMs
into multimodal PLVMs [5]. In addition, to mitigate the heavy-
tailed nature of industrial measurement data, the application
of Student’s-t distribution has been proposed for a “robust
inferential sensor” [6]. Furthermore, considering the dynamic
properties of processes, the introduction of the dynamic PLVM
(DPLVM) [4] has been proposed for inferential sensor modeling.
Notable adaptations include Ge et al. [7] modified the DPLVM
for inferential sensor applications, Shang et al. [8] incorporated
slow feature analysis (SFA) to capture the slowest varying fea-
tures in industrial processes, and Ma et al. [9] combined finite
mixture models with linear dynamical systems to propose the
switching linear dynamical system (SLDS) that accounts for
both dynamical and multimodal properties.

Recently, with the advancements in deep learning (DL)
techniques, deep neural modules have increasingly been
incorporated into the modeling of PLVMs, aiming to
enhance the accuracy of inferential sensors. Unlike traditional
PLVM structures, these deep neural modules are typically
“noninvertible,” a characteristic that makes the application of
the conventional (variational) expectation maximization (EM)
algorithm challenging (as previous works often relied on matrix
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Fig. 1. Illustration of: (a) AVI, with a red cross indicating the impossibility of reversing pθ(y|z) when modeled by a neural network. (b) The
generative network (decoder) of NDPLVMs with unimodal latent space for inferential sensor modeling (we plot label y merely). (c) The inference
network (encoder) of NDPLVMs with unimodal latent space for inferential sensor modeling.

(pseudo-)inverse to revert the generative model for latent vari-
able inference in E-step). To address this challenge, as shown in
Fig. 1(a), Kingma et al. [10] introduced an additional neural net-
work, known as the inference network and proposed a novel EM
algorithm called amortized variational inference (AVI). Building
on this development, Shen et al. [11] proposed the nonlinear
probabilistic latent variable regression (NPLVR) approach,
incorporating multilayer perceptrons into the training of PLVMs.

Notably, the advancements in DL and AVI techniques
have also facilitated the development of nonlinear variants of
DPLVMs, namely nonlinear dynamical probabilistic latent vari-
able models (NDPLVMs). These models incorporate various
neural architectures, such as long-short term memory (LSTM)
and gated-recurrent unit (GRU), to transcend the Markov as-
sumption of the latent space, as summarized in [12]. Currently,
NDPLVMs are gaining traction in inferential sensor modeling,
as demonstrated by models like deep Bayesian SFA (DBPSFA)
model [13] and dynamical mixture variational autoencoder re-
gression (DMVAER) model [14].

Despite advancements in network architectures for feature
extraction, applying NDPLVMs to inferential sensor tasks raises
two critical yet overlooked questions from the perspective of
inference network and model implementation (It is necessary
to highlight that the inference network plays a crucial role in
“reversing” the generative network within the context of AVI,
as mentioned above). We define key elements for clarity: unob-
servable latent variable (z), covariates (u), label (y), inference
network q, generative network p, and the transition function
(f ). The NDPLVMs training algorithm employs AVI, which
utilizes two neural networks: the inference network (q) to deduce
latent variable z from data (u), and the generative network (p)
to decode label y from z. This approach aims to minimize
two primary components: the regularization term, indicating
the deviation between inferred and prior latent spaces, and the
likelihood term, the difference between original and generated
data, both quantified using probabilistic density functions (pdf).
To better understand the challenges, the architecture of con-
ventional NDPLVMs for inferential sensor modeling, which
consists of a generative network (decoder) and an inference

network (encoder), are delineated in Fig. 1(b) and (c), respec-
tively. The essential challenges in this process are summarized as
follows:

1) Inaccurate Inference of Latent Space: According to
Bayes’ theorem, the inference network’s inputs should
align with the structure of the generative network p(y|z)
/ p(u, y|z). In the context of inferential sensor tasks,
where the generative network invariably involves y, the
inference network should ideally be formulated as q(z|y)
/ q(z|u, y) based on the comparison of Fig. 1(a) and (b).
However, most of current works have not incorporated the
label informationy into the inference network, as depicted
in Fig. 1(c). This omission could limit model performance
due to inaccurate inference of latent variable z. The key
to addressing this issue is reframing the model learning
problem into an optimization problem and selecting the
inference network’s input based on solving the optimiza-
tion problem.

2) Model Implementation Within DL Backends: As illus-
trated by the top and bottom rectangles in Fig. 1(b), it
is imperative to note that the foundational framework
of NDPLVMs derivation is predicated on the pdf form.
However, DL backends [15] are fundamentally structured
around individual data samples, which are instances sam-
pled from the pdf. This divergence between the theoretical
pdf and practical data samples engenders difficulties in
computational realization. To delineate further, consider
f tasked with mapping a latent variable z over a time
increment from t to t+ 1 (zt+1 = f(zt)). Drawing upon
the celebrated Liouville’s theorem, the pdf must adhere
to the equation p(zt+1) det |∂zf(zt)| = p(zt), which ne-
cessitates the computation of the Jacobian matrix. This
requirement, unfortunately, gives rise to a substantial
realization in network implementation by DL backends.
Consequently, a pivotal aspect is the derivation of moment
expressions like mean and covariance, a step vital in
bridging the gap between pdf and DL backends.

The key to addressing the aforementioned issues lies in con-
ducting a fundamental ab initio analysis of NDPLVMs from the
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perspective of learning objective derivation, learning objective
optimization, and model implementation. This involves thor-
oughly understanding the employed assumptions and strategies
when applying NDPLVMs to inferential sensors, validating the
effectiveness of these assumptions and strategies based on rig-
orous mathematical principles, and proposing novel approaches
to replace any unreasonable aspects.

To these ends, under the task of supervised learning, this
article addresses the identified challenges by introducing a new
NDPLVM, termed optimal control-NDPLVM (OC-NDPLVM),
tailored for inferential sensor tasks. Specifically, we derive its
learning objective using stochastic differential equation theory,
examine its parameter learning based on the celebrated alter-
nating direction multiplier method (ADMM), and rigorously
analyze its architectural components. In this analysis procedure,
our approach reveals that the inference network mirrors an
OC subproblem in ADMM, providing the analysis of solution
property of OC problem to guide the selection of inference
network’s input and therefore address issue 1). To address is-
sue 2), we rigorously analyze the moment expressions within
the neural network structure. Furthermore, we summarize the
training and testing inference algorithm and discuss its con-
vergence properties. Finally, empirical validation is provided
through experiments on two industrial process datasets, demon-
strating the efficacy of our approach. In summary, this article’s
contributions are summarized as follows:

1) Ab Initio Analysis for Model Accuracy Improvement: We
conduct a foundational ab initio analysis of NDPLVMs
for inferential sensor tasks, drawing on mathematical
theories from stochastic differential equations and OC.
This analysis seeks to enhance the accuracy of infer-
ential sensors by rigorously examining, validating, and,
when necessary, revising the assumptions involved in the
derivation of learning objectives, parameter estimation,
and model implementation.

2) Novel Learning Objective and Parameter Learning Pro-
cedure: Throughout our analysis, we rederive a novel
learning objective for NDPLVMs, recasting it as an
optimization problem. We then propose a novel al-
gorithm based on the ADMM for efficient model
learning.

3) OC-NDPLVM Development: By leveraging the learning
objective and ADMM-based learning procedure, we rec-
ognize that the inference network of NDPLVM acts as a
simulator for the control signal of an OC problem, select
the input for the inference network based on the solution
structure of the OC problem, and consequently introduce
a novel NDPLVM named OC-NDPLVM.

4) Moment Expressions for Numerical Implementation: For
practical model implementation, we derive an approxima-
tion of the moment expressions in OC-NDPLVM. This
approximation is based on the analysis of moments in
SDEs, facilitating numerical implementation.

Organization: The rest of this article is organized as fol-
lows: We introduce preliminary concepts adopted this study in
Section II. We then derive the architecture, learning objective,
learning algorithm, and the approximate moment expressions of

OC-NDPLVM in Section III. We finally demonstrate the efficacy
of OC-NDPLVM with two inferential sensor tasks in Section IV.
Finally, Section V concludes this article.

II. PRELIMINARIES

A. Amortized Variational Inference

Let y and z be the observed and latent variables, respec-
tively. Variational inference tends to approximate the posterior
distribution of the latent variable p(z|y) with the variational
distribution q(z) by minimizing their Kullback–Leiber diver-
gence (KL divergence), which can be reformulated as the max-
imization of the Evidence Lower BOund (ELBO) for model
training [16]:

DKL(q(z)‖p(z|y)) =
∫

q(z) log
q(z)

p(z|y)dz

=

ELBO︷ ︸︸ ︷∫
q(z)

[
log

q(z)

p(z)
− log p(y|z)

]
dz+ log p(y) (1)

whereDKL(q(z)‖p(z|y)) is the KL divergence between q(z) and
p(z|y). From the derivation presented in (1), it becomes apparent
that our learning objective evolves to be the ELBO, given that
log p(y) retains its status as a constant.

Note that, the optimal q∗(z) is approximate to p(z|y). Built
upon this, to estimate the optimal variational distribution q(z),
AVI employs a stochastic function qφ(z|y) that maps the ob-
served variable to the latent variable belonging to the vari-
ational posterior density; the parameter φ is learned during
the optimization process [16]. Moreover, in the context of
AVI, it is a common assumption that qφ(z) can effectively
model the optimal variational distribution q∗(z). If we consider
the optimal variational distribution q∗(z) as a function, the
fundamental goal of AVI is to identify the input variable of
this function and approximate it using a function parameter-
ized by φ. In this way, the model can infer the latent vari-
ables for new data points, without rerunning the optimization
process.

B. Stochastic Differential Equation

Let (Ω,F ,P) [17] be a probabilistic space, where Ω is the
sample space, σ-algebraF is the set of events, and P is probabil-
ity measure:F �→ [0, 1]. LetWt be aFt-adapted Wiener process
on this probabilistic space, b(x, t) and L be two Ft-adapted
stochastic process, we have an Itô process

x(t) = x(0) +
∫ t

0
b(x, τ)dτ +

∫ t

0
LdWt (2)

which is the solution to the stochastic differential equation

dx(t) = b(x, t)dt+ LdWt (3)

where b(x, t) is referred to the drift term, L is referred to the
volatility term. More detailed information about these concepts
are given in Section S.I of Supplementary Material.
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Based on the above mentioned concepts, the likelihood ratio
of two Itô processes is given as follows based on the celebrated
Girsanov theorem and Radon–Nikodym theorem [17].

Theorem 1 (Likelihood ratio of Itô Process): Based on (3),
we can introduce two Itô processes as follows:

dx = f(x, t)dt+ dW,x(0) = x0

dy = g(y, t)dt+ dW, y(0) = x0 (4)

where f(x, t) and g(y, t) are drift terms. The Radon–Nikodym
derivative along their respective path measures P and Q is given
by

dP

dQ
(x) = exp

(
−1

2

∫ t

0
‖g(x, τ)− f(x, τ)‖2dτ

+

∫ t

0
(g(x, τ)− f(x, τ))�dWt

)
. (5)

From this theorem, we can further obtain the KL divergence
of two Itô processes as follow [17] (the detailed derivation is
given in Section S.II.A of Supplementary Material)

DKL(Qt‖Pt) = EQ(z)

[
1
2

∫ t

0
‖ν‖2dτ

]
(6)

where ν is defined as the follow equation according to (5)

Lν = g(x, τ)− f(x, τ) (7)

and E is expected operator.
Note that, compared to conventional KL divergence between

two d-dimensional Gaussian distribution [denoted as q(z) ∼
N (μ1,Σ1) and p(z) ∼ N (μ2,Σ2)], which widely applied in
conventional NDPLVMs derivation

DKL(q(z)‖p(z)) = 1
2

[
log

detΣ1

detΣ2
+ Tr

(
Σ−1

1 Σ2
)

+ (μ1 − μ2)
�Σ−1

1 (μ1 − μ2)− d

]
. (8)

The KL divergence between two Itô processes, as defined in (8),
adopts a quadratic form that eliminates the need for matrix
inversion computations. This simplification greatly facilitates
the process of model derivation. Moreover, the Itô process is
closely linked to Brownian motion, a phenomenon frequently
observed in various natural occurrences. It is worth emphasizing
that industrial processes commonly employ the Kalman Filter,
which can be viewed as a variant of the Itô process [17]. Taking
these factors into consideration, we have chosen the Itô process
as the model prior in this article.

C. ADMM Algorihtm

Consider a special case where the decision variables w and v
in the objective function term are separable (assume f and h are
convex)

min Obj(v, w) = f(w) + h(v)

s.t. Aw+ Bv = c.. (9)

According to the augmented Lagrangian multiplier method [18],
we can cast (9) to an unconstrained optimization problem, with
the objective function defined as follows:

L = f(w) + h(v) + λ�(Aw +Bv − c)

+
ρ

2
‖Aw +Bv − c‖2

2 (10)

where λ is Lagrangian multiplier, and ρ is quadratic penalty
coefficient. The celebrated ADMM algorithm [18] is a common
algorithm to solve (10), where variables w, v, and λ are opti-
mized separately at each iteration⎧⎪⎪⎨

⎪⎪⎩
wk+1 = argminw L(w, vk)
vk+1 = argminv L(wk+1, v)

λk+1 = λk + ρ(Awk+1 +Bvk+1 − c)

. (11)

III. PROPOSED APPROACH: ANALYZING AND IMPROVING

NDPLVMS

In this section, we perform an ab initio analysis of NDPLVMs
and introduce our OC-NDPLVM to address challenges related to
the “inaccurate inference of latent space” and “model integration
within DL backends.” On this basis, the structure of this section
is organized as follows: In Section III-A, we define the problem
we aim to solve and outline the assumptions underlying our
approach. Section III-B derives the learning objective, following
the approach of previous NDPLVMs. In Section III-C, we ad-
dress the “inaccurate inference of latent space” issue by optimiz-
ing the learning objective and selecting the inference network’s
input throughout investigating the solution structure of OC sig-
nal. Sections III-D and III-E tackle the “model implementation
within DL backend” challenge by exploring the solution of the
OC problem and deriving the relevant moment expressions,
respectively. The model architecture and convergence analysis
are presented in Sections III-F and III-G, respectively.

A. Problem Statement

In this study, as highlighted in our title, our focus is solely on
inferential sensor tasks under a supervised learning context. This
domain represents a specialized subset of time-series analysis.
Extending the concepts presented in [19], we define the forecast
horizon as H and the historical sequence length as T. Based on
this framework, our task is as follows: Given the historical se-
quence of key indices y1:T ∈ RT and the sequence of covariates
u1:T+H ∈ RD×(T+H), we aim to predict the key index for the
next H steps, specifically yT+1:T+H ∈ RH.

B. Learninig Objective Derivation

1) ELBO Acquirement: Based on Section III-A, the learn-
ing objective can be defined as follows to maximize the log-
likelihood of p(�y|�u):

argmax log p(�y|�u) = argmax log

∫
p(�y, �z|�u)dz. (12)

However, the right-hand-side of (12) is intractable. To solve this
problem, the assumption on latent space z is introduced.
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As introduced in Section II-B, compared to simpler random
walks, the Itô process accommodates a higher degree of com-
plexity and variability in modeling dynamic systems. Moreover,
the Itô process, when utilized as a prior, lends itself to the direct
application of established results and theorems from the theory
of stochastic processes. Last, in Bayesian inference, a critical
task is to update our knowledge about unknown parameters as
new data becomes available.

Therefore, based on Sections II-A and II-B, we first define
the prior Itô process to describe the transition between states at
different time with parameter θ as follows:

dz = fθ(z, u)dt+ LdWt (13)

where Wiener process Wt has the spectral density matrix Q,
which is set as I in this article.

To align with the prior Itô process, based on the concept of
variational inference introduced in Section II-A, the posterior is
designed as another Itô process with parameter φ as follows to
approximate the prior Itô process:

dz = fφ(z, u)dt+ LdWt. (14)

Besides, we define ν as follows:

Lν = fφ(z, u)− fθ(z, u). (15)

Based on (14) and (15), the inference network q with parameter
φ, as mentioned in Section II-A, is transformed into the control
policy ν (i.e., the control policy ν is simulated by the inference
network: ν = qφ(·)). It is important to note that the input to
q remains unspecified and can be elucidated by examining the
structural solution of the OC policy ν. In other words, the task of
determining the input to the network q is addressed by exploring
the solution structure of the OC ν.

Consolidating (12) to (15), we can obtain the following propo-
sition of our model learning objective:

Proposition 2: Optimizing (12) is equivalent to optimize the
problem defined as follows:

min
θ,ν

T∑
t=1

{
EQ(z)

[
− log pθ(yt|zt, u1:t) +

∫ t

t−1

1
2
‖ν‖2dτ

]}

s.t. dz = fφ(z, u)dt + LdWt

= fθ(z, u)dt+ Lνdt+ LdWt. (16)

Proof: The proof is given in Section S.II.B. of Supplementary
Material. �

2) Upper Bound of ELBO for Inferential Sensor: In Proposi-
tion 2, we reformulate the parameter learning optimization prob-
lem associated with NDPLVMs. This reformulation provides
a perspective for understanding the core principles underly-
ing parameter learning within convex optimization framework.
However, the learning objective outlined in (16) proves to be
challenging to optimize owing to the indeterminate initial points
across various intervals. In addition, its computation necessitates
a “backtracking” operation, an impractical approach for infer-
ential sensor tasks given their inherent causality. To highlight
the issue, we can consider the model at timestamp t: At time
t, yt is predicted using the latent variable zt. Consequently,

according to (16), zt depends on future values yt+1:T. However,
this is impossible to achieve without a “time machine.” This
inconsistency poses a significant challenge for practical imple-
mentation. Fortunately, this problem can be solved based on
“one-step lookahead minimization” method according to [20].
And thus, we propose the following proposition to derive an
upper bound for (16):

Proposition 3: The objective function defined in (12) have
the following upper bound:

min
θ,ν

T∑
t=1

{
EQ(z)

[
− log pθ(yt|zt, u1:t) +

∫ t

t−1

1
2
‖ν‖2dτ

]}

≤
T∑
t=1

min
θ,ν

{
EQ(z)

[
− log pθ(yt|zt, u1:t) +

∫ t

t−1

1
2
‖ν‖2dτ

]}
.

(17)

Proof: The proof is given in Section S.II.C of Supplementary
material. �

It is noteworthy that, to the best of our knowledge, the majority
of NDPLVMs tailored for inferential sensor tasks, as exemplified
by the works referenced in [13], [14], [21], [22], employ the
right-hand side of (17) as their learning objective. This is the
case even though they may not have explicitly derived the right-
hand side in their respective studies [13], [14], [21], [22]. A key
criterion for this determination is the absence of “backtracking
operations” in solving the objective function, indicating that the
right-hand side of (17) is being used as the learning objective.
However, the inequality defined in (17) has not been thoroughly
explored in previous works [13], [14], [21], [22].

C. Inference Network’s Input Selection by Solution
Structure Investigation

Based on (17) in Section III-B, we can conduct concerning
analysis: the right-hand-side of (17) has two sets of variables to
be optimized, viz. the model parameter θ and the control policy
ν. It should be pointed out that this problem involves an integral
term

∫
with respect to ν in time domain, which belongs to an

OC problem as per reference [23]. Based on this, we named
our model OC-NDPLVMs. Moreover, it should be pointed out
that the OC problem can be regarded as an infinite-dimensional
optimization problem [24].

Comparing (17) with (9), we observe that the θ in (17) corre-
sponds to the w in (9); the ν in (17) corresponds to the v in (9).
The log-likelihood term log pθ(yt|zt, u1:t) and control policy
terms

∫ t

t−1 ‖ν‖2dτ are separable. Besides, since the latent space
satisfies the differential equation in NDPLVMs, the Lagrangian
multiplier λ and the quadratic penalty coefficient ρ are explicitly
ignored in the remainder of this manuscript. This observation
motivates us to solve the parameter learning of NDPLVMs given
in (17) through the lens of ADMM. Since the model parameter
θ can be optimized through automatic-differentiation-based DL
backends such as PyTorch [15] by stochastic gradient descent-
based optimizers, the minimization subproblem concerns with
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θ will not be discussed. The rest of this section will dis-
cuss the minimization subproblem (the OC problem) concerns
with ν.

Based on Proposition 3, optimizing the global ELBO de-
fined in (16) can be converted to optimizing the local ELBO
within interval [t, t+ 1] for t ∈ [0,T). And thus, the follow-
ing section will focus on the optimization of local ELBO
within interval [t, t+ 1]. We will take the OC signal deriva-
tion between interval [t, t+ 1] as an example to illustrate this
subproblem.

Based on the Gaussian assumption on the observation data,
the ELBO between interval [t, t+ 1] can be expanded as

EQ(z)

[
− log pθ(yt|zt, u1:t) +

∫ t

t−1

1
2
‖ν‖2dτ

]

= EQ(z)

[
1
2
(yt − μy

t )
�(yt − μy

t ) +

∫ t

t−1

1
2
‖ν‖2dτ

]
(18)

where we parameterize p(y|zt, u1:t) asN (μy
t , I) as per [13] and

[21], and μy
t is generative by generative network gθ(·) according

to μy
t = g(μz

t ). It is noteworthy that this approximation can be
understood in terms of conceptualizing pθ(y|zt, u1:t) as a Dirac
delta distribution (i.e., δ(y|zt, u1:t)) and then approximating it
with a normal distribution N (y − μy

t , I). This is a common
assumption in the context of kernel density estimation, when
the bandwidth is set to 1 according to [25]. Consequently, we
conduct the approximation in the last line. Besides, the mean
value μy

t is obtained via neural network denoted as gθ

μy
t = E[gθ(zt)] ≈ gθ(μ

z
t ). (19)

Based on the approximation operations, the following OC prob-
lem can be formulated to obtain the optimal ν (denoted as ν∗)

min
ν

(yt − μy
t )

�(yt − μy
t ) +

∫ t

t−1

1
2
‖ν‖2dτ

s.t. dz = fθ(z, u)dt + Lνdt (20)

where the diffusion term is omitted since the model training
mainly concentrates on the mean. And thus, the following
Hamiltonian equation can be derived to solve the constrained OC
problem according to the Pontryagin’s maximum principle [23]:

H =
1
2
‖ν‖2 + λ�(fθ(z, u) + Lν) (21)

where λ is Lagrangian multiplier. According to the sufficient
condition for OC extreme value, the following equation can be
obtained:

∂H
∂ν

= ν + Lλ = 0. (22)

Note that, the second-order derivative of the Hamiltonian func-
tion is a positive-definite matrix (identity matrix I): ∇2

νH =
I � 0, which indicates that the generalized Legendre–Clebsch
necessary condition can be satisfied [23]. As such, the extreme
value obtained by the OC signal ν∗ according to (21) is the
minimum value.

According to the OC principle, the mean μz
t , and the co-state

λ satisfy the following differential equations:{
dμz

t

dt = E(∂H∂λ
) = fθ(μ

z
t , u) + Lν

dλ
dt = −∂H

∂z = −∂fθ(z,u)
∂z

. (23)

The corresponding boundary condition for the equations are give
as follows: {

μz
t−1 = E(zt−1)

λt = 2(μy
t − yt)

� ∂g(zt)
∂zt

∣∣
μz
t

. (24)

By observing (21) to (24), the optimal ν mainly concerned with
the observation data y� at final time t, stochastic variable zt
(parameterized via mean μz

t and covariance Σt). It should be
pointed out that, the computation of the Jacobian will result in
a higher model training time. However, we know the OC is the
function of yt, μz

t , and Σz
t . On this basis, revist (15), we can

simulate a neural network denoted as q with parameter φ as
Section II-A mentioned as follows:

ν∗ = qφ(yt, zt) = qφ(yt, μt,Σt). (25)

Drawing on the solution of the OC subproblem delineated in
(25), we have effectively addressed the issue of “inaccurate
inference of latent space” by carefully selecting the input for
the inference network. Moreover, our analysis extends beyond
the conventional scope of NDPLVMs, which traditionally con-
sider u as the sole inference network input. Our findings reveal
that the key to achieving accurate inference of z lies in the label
y, offering a significant insight that refines the conventional
understanding in this domain.

D. Measure Change and Likelihood Term Approximation

Applying the Girsanov theorem, the posterior process under
measure Q can be derived via the prior process under measure
P as follows:

dzQ = exp

(∫ t

t−1
−1

2
‖ν‖2dτ

)
dzP. (26)

Since at start point t− 1 (t ∈ [0,T)), the probabilistic density of
z under measure Q and P are same. The probabilistic density of
z under measureQ at time t can be obtained via the probabilistic
density of z at measure P. Supposed the probabilistic density of
z at time t is

zt ∼ N
(
μz,P
t ,Σz,P

t

)
(27)

where superscript z,P indicates that zt is in measure P, μ and
Σ are the mean and covariance of normal distribution, respec-
tively. Suppose the solution of the integral of Radon–Nikodym
derivative ν is

ν ∼ N (μν
t ,Σ

ν
t ) . (28)

Then, the probabilistic density of z under measure Q can be
derived as follows at time t:

zQt ∼ N
((

Σν
t +Σz,P

t

)−1 (
Σν

t μ
ν
t +Σz,P

t μz,P
t

)
(
Σν

t +Σz,P
t

)−1 (
Σν

tΣ
z,P
t

))
(29)
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Fig. 2. Overall architecture of OC-NDPLVM.

which can be regarded as Schur complement operation [26].

E. Derivation of Moment Expressions

In this section, the moment expressions approximation op-
erations are proposed in detail to answer the question ‘model
implementation within DL backends.”

1) Moment Expressions for Transition: According to [17],
the distribution of an Itô process in time-axis can be represented
by normal distribution denoted as N , with a mean of μ and a
covariance of Σ. Based on this, the following proposition for
mean and covariance are given:

Proposition 4: The mean and covariance equations between
zt and zt+1 can be given in (30) and (31), respectively,

dμ

dt
= f(μ, t) (30)

dΣ

dt
= Σ

[
∂f(z, t)

∂z

∣∣∣
z=μ

]�

+Σ�
[
∂f(z, t)

∂z

∣∣∣
z=μ

]
+ L(μ, t)QL�(μ, t). (31)

Proof: The proof is provided in Section S.II.D of Supplemen-
tary Material. �

2) Moment Expressions for Loss Function: Based on pre-
vious section, we further derive the moment expressions of
EQ[‖yt − g(zt, u1:t)‖2] for inferential sensor task by following
proposition:

Proposition 5: The moment expressions of EQ[‖yt −
g(zt, u1:t)‖2] can be approximated as follows:

EQ

[‖yt − g(zt, u1:t)‖2
]

≈Eε∼N (0,I)

[
L(μz

t )+

(
∂L
∂z

∣∣
z=μz

t

)
(σz

t )

(
∂L
∂z

∣∣
z=μz

t

)�
×ε

]

:= L(μz
t ). (32)

Proof: The proof is given in Section S.II.E of Supplementary
Material. �

F. Model Overall Structure

Based on the abovementioned sections, the model architecture
is summarized in Fig. 2. It can be seen that the model consists

Fig. 3. Illustration of OC-NDPLVM inference between t = 0 and t = 1:
(a) prior process transition. (b) Label prediction, (c) OC signal simula-
tion. (d) Posterior process correction.

of two different colored nodes, where the green node represents
the observable variables, and the orange node represents the
latent variables. Note that the control policy is simulated by the
inference network, where we assume that the neural network can
infer the OC signal based on its input as assumed in (25).

To better understand the inference procedure of OC-
NDPLVM, we visualize the inference procedure between t = 0
and t = 1 in Fig. 3 based on Fig. 2. According to Fig. 3, the
model goes through the following steps:

1) Prior Process Transition [Black Line, Fig. 3(a)]: Estimate
the latent state zt as ẑt via last latent state zt−1 and
covariate ut according to (13)

2) Label Prediction [Blue Line, Fig. 3(b)]: Predict the label/
observation value yt as ŷt via ẑt according to (19).

3) Simulate OC Signal [Red Line, Fig. 3(c)]: Simulate the
control signal likelihood ratio (26) via zt−1 real label
yt/predicted label ŷt according to (25)

4) Posterior Process Correction [Green Line, Fig. 3(d)]:
Compute zt via correcting ẑt according to (29)

By repeating the steps, the model can infer the observation
sequence �y with the covariate sequence �u.

Furthermore, if we detract the control signal part in the
middle of Fig. 2, the model degrades to current NDPLVMs
for inferential sensor tasks (detailed comparisons are given in
Section S.III.D of Supplementary Material due to page limit).
On this basis, the corresponding algorithms for model inference
and training & testing are summarized in Section S.III.C of
Supplementary Material due to page limit.

G. Theoretical Analysis of Learning Objective
Convergence

In this section, we want to analyze the convergence of the
proposed ADMM-based algorithm to make our work more com-
plete. The following proposition is given for the convergence of
proposed ADMM-based algorithm:

Proposition 6: The convergence of the optimization proce-
dure in (11) can be guaranteed, given that: 1), the inference
network qφ can simulate the OC signal ν∗; and 2) the learning
rate in the stochastic gradient optimizer ensures the reduction of
the loss function L.

Proof: The proof is given in Section S.IV.A of Supplementary
Material. �
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Assumption 1) is a widely admitted setting in the context of
AVI-based models as we mentioned in Section II-A, and As-
sumption 2) can be realized easily when the learning rate is low
enough (analysis about this condition is given in Section S.IV.B
of Supplementary Material due to page limit).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we devise experiments on two industrial infer-
ential sensor datasets to verify the superiority of OC-NDPLVM
and answer the research questions from the perspective of theory
as follows:

1) Performance: Does OC-NDPLVMs work? Section IV-B
evaluates OC-NDPLVM’s performance against a vari-
ety of baseline methods using two datasets from real
industrial scenario, thereby establishing a foundational
understanding of its operational efficiency.

2) Convergence: Does it converge? To backup our theo-
retical analysis in Section III-G. Section IV-C analyzes
the iteration curve for two datasets along epoch, thereby
illustrating the convergence trajectory at the epoch scale.

3) Gains: Why does OC-NDPLVM work? Section IV-D de-
constructs OC-NDPLVM to discern the sources of its
performance gain.

On this basis, the following research questions are also studied
from the perspective of practice as follows (due to page limit,
these results are provided in Supplementary Material):

1) Complexity: What’s the computational complexity? Sec-
tion S.VII.A (Supplementary Material) compares the
computational complexity spatially and temporally to
prove the feasibility of OC-NDPLVM from the perspec-
tive of deployment.

2) Sensitivity: Is it sensitive to key hyperparameters? Sec-
tion S.VII.B (Supplementary Material) elucidates the im-
pact of different hyperparameters on the prediction accu-
racy, analyzing the system’s responsiveness to parameter
alterations.

A. Experimental Settings

1) Datasets: We select two datasets namely debutanizer col-
umn (DC) and catalytic shift conversion (CSC). More details
about these two datasets are given in Section S.V of Supple-
mentary Material.

2) Baseline Models: We compare the proposed OC-
NDPLVM with the following baseline models:

1) Recurrent Network-Based methods: auto-regressive tem-
poral convolution network (AR-TCN) [27] and dual-
attention LSTM (DA-LSTM) [28].

2) PLVM-Based Methods: NPLVR [11], DPLVM [7], prob-
abilistic discriminative time-series model (PDTM) [22]
and DBPSFA [13].

3) Self-Attentive-Based Methods (nonauto-regressive struc-
ture): LogSparse Transformer (LogTrans) [29] and In-
former (state-of-the-art, 2021) [30].

4) Mixture Model-Based Methods: Dirichlet process mix-
ture model (DPMM) and DMVAER [14].

The reasons for choosing these models, computational re-
source, and other experimental details for experiments are also
provided in Section S.VI of Supplementary Material.

3) Evaluation Metrics: The root mean squared error (RMSE)
and mean absolute error (MAE) are adopted as evaluation met-
rics. Their expressions are given as follows:

RMSE =
1
N

1
H

N∑
n=1

N∑
h=1

√
(ŷh,n − yh,n)

2 (33)

MAE =
1
N

1
H

N∑
n=1

H∑
h=1

|ŷh,n − yh,n| (34)

where ŷ represents the predicted values, y denotes the actual val-
ues,H is the length of the prediction horizon, andN signifies the
total number of evaluation instances. For metrics such as RMSE
and MAE, a lower value correlates with a more accurate model.
Our evaluation metrics operate on a rolling basis along the time
axis with a length-H prediction horizon. Consequently, in line
with references [19], [30], we do not provide the conventional
“prediction-real results” comparison graphs in our experimental
results.

B. Overall Performance

In this section, question “Does OC-NDPLVMs work?” about
performance comparison is answered. The comparison results
for the OC-NDPLVM and other baseline models on the DC and
CSC datasets are reported in Table I. Notably, all experiments
are repeated at least three times under six different random seeds.
The following observations can be obtained from Table I.

1) For the DC dataset, the RMSE for H = 2, 3, 4, 5 are
39.73% ∼ 92.54%, 33.02% ∼ 89.46%, 17.97% ∼
86.29%, and 8.14% ∼ 83.08% lower than those of the
baseline models, respectively; the MAE forH = 2, 3, 4, 5
are 42.68% ∼93.00%, 37.96% ∼ 90.40%, 23.14% ∼
87.71%, and 13.72% ∼ 84.97% lower than those of the
baseline models, respectively.

2) For the CSC dataset, the RMSE for H = 2, 3, 4, 5 are
0.45% ∼ 80.49%, 3.43% ∼ 79.90%, 0.79% ∼ 78.86%,
and 0.17% ∼ 77.92% lower than those of the baseline
models, respectively; the MAE for H = 2, 3, 4, 5 are
0.65% ∼ 81.55%, 4.06% ∼ 81.32%, 1.21% ∼ 80.45%,
and 0.28% ∼ 79.21% lower than those of the baseline
models, respectively.

3) The performance gains of OC-NDPLVM against most
baselines are significant, as is evidenced by the p-value<
0.05 over the paired samples t-test.

4) The recurrent network-based methods and self-attentive-
based methods have better performance than PLVM-
based methods and mixture model-based methods.

5) Linear PLVMs like DPLVM and DPMM have worse
performance than the nonlinear version like NPLVR and
DMVAER.

6) When the prediction window increases, the performance
degradation of self-attention models is smaller than that
of NDPLVMs and Recurrent models.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on October 10,2024 at 15:17:38 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ANALYZING AND IMPROVING SUPERVISED NDPLVM FOR INFERENTIAL SENSORS 9

TABLE I
MODEL PERFORMANCE ON INFERENTIAL SENSOR TASK

Observations 1) and 2) indicate that the proposed OC-
NDPLVM outperforms other baseline models. Observation 3)
indicates that it is sufficient to say the OC-NDPLVM is better
than other baseline models for most of the scenarios. Inter-
estingly, Observation 4) reflects that NPLVMs still has a lot
of room for improvement in the inferential sensor modeling
task, and further demonstrates the necessity of implementing the
inference network input selection and moment expression in this
article from practice. Observation 5) emphasizes the importance
of introducing DL architectures for NDPLVMs performance
improvement. Observation 6) indicates that the models with
auto-regressive structure may suffer from gradient vanishing
with the increase of forecasting horizon, while the self-attention
models can alleviate this issue thanks to their nonauto-regressive
structure.

C. Convergence of the ADMM Framework

In this section, question “Does it converge?” about con-
vergence analysis is answered to practically demonstrate the
ADMM optimization framework’s convergence. Fig. 4(a) and
(b) proposes the likelihood term and the control energy term
along the iteration process. From Fig. 4, it can be seen that both
the likelihood term and energy term decrease with the increase
of the iteration epoch. The decrease of the likelihood term along
the training epoch in Fig. 4(a) indicates that the latent state can
represent the label pattern in the training process. Consequently,
the decrease of the control energy with the increase of the
training epoch in Fig. 4(b) indicates that the dependence on the
label information decreases in the training process. Specifically,
the likelihood and control energy terms tend to be unchanged
after 10 epochs. This phenomenon reflects that the optimization

Fig. 4. Convergence analysis of the DC and
CSC datasets for H = 4. (a) Negative log-likelihood
(− 1

N

∑N

n=1

∑T+H

t=1 EQ[log p(yt,n|zt,n, ut,n)]). (b) Control energy

term ( 1
N

∑T+H

t=1 EQ[
∫ t

t−1
‖ντ‖2dτ ]) along iteration process. The shaded

area indicates the ± 1.5 standard deviation uncertainty interval.

strategy built upon ADMM framework has a fast convergence
rate. Furthermore, it can be observed that the energy of the
control signal tends to approach zero after a few epochs. This
suggests that the approximation utilized in the assumption in the
proof of Proposition 5 (Section S.II.E, Supplementary Material)
is reasonable.

D. Ablation Study

In this section, we conduct an ablation study focusing on two
key components: the OC-based inference network structure (ab-
breviated as “OC,” where the network does not incorporate label
information y if OC is disabled), and the model implementation
based on moment expressions (abbreviated as “ME,” where
the model follows the implementation approach of previous
works [13], [21], [22] with the reparameterization trick and
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TABLE II
ABLATION STUDY RESULTS

conducts sampling between different time intervals if ME is
disabled).

The following observations are summarized from Table II.
1) Incorporating OC Improves Performance: The results

reveal a significant drop in model performance when the
inference network’s input does not incorporate OC-based
structuring, particularly noted in the first and third rows of
each horizon. This aligns with observations from Table I,
where NDPLVMs generally underperform compared to
recurrent and self-attentive models. This underscores the
critical role of the OC-based approach for input selection,
as proposed in Section III-C.

2) Importance of ME: Disabling ME, as shown in the sec-
ond and third rows of each horizon, also leads to re-
duced performance. This emphasizes that proper model
implementation, following the ME framework, is cru-
cial when deploying NDPLVMs for inferential sensor
tasks.

These points affirm the necessity of including label infor-
mation in the inference network’s input and adhering to the
model implementation strategy provided by moment expres-
sions to ensure robust performance of NDPLVMs in inferential
sensors.

V. CONCLUSION

In this work, to answer two fundamental but essential prob-
lems, namely “inaccurate inference of latent space” and “model
implementation within DL backends” in the NDPLVMs, we first
proposed our OC-NDPLVM and its loss function from SDE
theory, conducted detailed analysis of model training algorithm,
derived moment expressions, and summarized the model overall
architecture. In this procedure, we redesigned the input of infer-
ence network by solving the OC subproblem and simplified the
model implementation by obtaining the moment expressions.
Finally, to empirically validate the proposed method’s effective-
ness, we conduct various inferential sensor experiments on two
industrial datasets.

Future directions can be focused on the introducing other inte-
grators to alleviate the stiffness issue of ODEs [31] and improve
model training efficiency with other algorithms like adjoint sen-
sitivity method [23]. Besides, other distribution transformation
methods like the sequential Monte-Carlo method [32] can also
be adopted to estimate the likelihood function more accurately.
Furthermore, this task primarily focuses on supervised learning.
It is important to note that semisupervised scenarios, where some
covariates may not have labels, can also arise in inferential sensor
tasks. To address this, exploring how to extend the proposed ap-
proach to semisupervised context by leveraging transfer learning
technique [33] or redesigning network architecture [34], and
enhancing inferential sensor modeling using data with limited
or no labels, is an intriguing direction for future research. Finally,
industrial processes may continue to be affected by various types
of data noise [35], making the investigation of NDPLVM struc-
tures that are robust to such noise a significant research direction.

REFERENCES

[1] F. Qian, Y. Jin, S. J. Qin, and K. Sundmacher, “Guest editorial special issue
on deep integration of artificial intelligence and data science for process
manufacturing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8,
pp. 3294–3295, Aug. 2021.

[2] X. Kong, X. Jiang, B. Zhang, J. Yuan, and Z. Ge, “Latent variable models in
the era of industrial Big Data: Extension and beyond,” Annu. Rev. Control,
vol. 54, pp. 167–199, 2022.

[3] S. Yu, K. Yu, V. Tresp, H.-P. Kriegel, and M. Wu, “Supervised probabilistic
principal component analysis,” in Proc. 12th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2006, pp. 464–473.

[4] M. J. Beal, “Variational algorithms for approximate Bayesian inference,”
Ph.D. dissertation, Univ. College London, London, U.K., May 2003.

[5] L. Yao and Z. Ge, “Big data quality prediction in the process industry:
A distributed parallel modeling framework,” J. Process Control, vol. 68,
pp. 1–13, 2018.

[6] J. Wang, W. Shao, X. Zhang, and Z. Song, “Dynamic variational Bayesian
student’s t mixture regression with hidden variables propagation for indus-
trial inferential sensor development,” IEEE Trans. Ind. Informat., vol. 17,
no. 8, pp. 5314–5324, Aug. 2021.

[7] Z. Ge and X. Chen, “Dynamic probabilistic latent variable model for
process data modeling and regression application,” IEEE Trans. Control
Syst. Technol., vol. 27, no. 1, pp. 323–331, Jan. 2019.

[8] C. Shang, B. Huang, F. Yang, and D. Huang, “Probabilistic slow feature
analysis-based representation learning from massive process data for soft
sensor modeling,” AIChE J., vol. 61, no. 12, pp. 4126–4139, 2015.

[9] Y. Ma and B. Huang, “Extracting dynamic features with switching models
for process data analytics and application in soft sensing,” AIChE J.,
vol. 64, no. 6, pp. 2037–2051, 2018.

[10] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in Proc.
Int. Conf. Learn. Representations, 2014, pp. 1–8.

[11] B. Shen, L. Yao, and Z. Ge, “Nonlinear probabilistic latent variable regres-
sion models for soft sensor application: From shallow to deep structure,”
Control Eng. Pract., vol. 94, 2020, Art. no. 104198.

[12] L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, and X. Alameda-Pineda,
Dynamical Variational Autoencoders: A Comprehensive Review. Boston,
MA, USA: Now, 2021.

[13] C. Jiang et al., “Deep Bayesian slow feature extraction with application to
industrial inferential modeling,” IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 40–51, Jan. 2023.

[14] L. Yao, B. Shen, L. Cui, J. Zheng, and Z. Ge, “Semi-supervised deep dy-
namic probabilistic latent variable model for multimode process soft sensor
application,” IEEE Trans. Ind. Informat., vol. 19, no. 4, pp. 6056–6068,
Apr. 2023.

[15] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2019,
vol. 32, pp. 1–12.

[16] A. Ganguly, S. Jain, and U. Watchareeruetai, “Amortized variational
inference: A systematic review,” J. Artif. Intell. Res., vol. 78, pp. 167–215,
2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on October 10,2024 at 15:17:38 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ANALYZING AND IMPROVING SUPERVISED NDPLVM FOR INFERENTIAL SENSORS 11

[17] S. Särkkä and A. Solin, Applied Stochastic Differential Equations, vol. 10.
Cambridge, U.K.: Cambridge Univ. Press, 2019.

[18] S. Boyd et al. Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers, vol. 3, no. 1. Boston, MA,
USA: Now, 2011.

[19] Q. Wen et al., “Transformers in time series: A survey,” in Proc. 32nd
Int. Joint Conf. Artif. Intell., 2023, pp. 6778–6786, doi: 10.24963/ij-
cai.2023/759.

[20] D. Bertsekas, A Course in Reinforcement Learning. Belmont, MA, USA:
Athena Scientific, 2023.

[21] B. Shen and Z. Ge, “Supervised nonlinear dynamic system for soft sensor
application aided by variational auto-encoder,” IEEE Trans. Instrum.
Meas., vol. 69, no. 9, pp. 6132–6142, Sep. 2020.

[22] Y. Lu, X. Peng, D. Yang, C. Jiang, and W. Zhong, “The probabilistic
discriminative time-series model with latent variables and its application
to industrial chemical process modeling,” Chem. Eng. J., vol. 423, 2021,
Art. no. 130298.

[23] L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze,
The Mathematical Theory of Optimal Processes. Evanston, IL, USA:
Routledge, 1962.

[24] H. O. Fattorini, Infinite Dimensional Optimization and Control Theory,
vol. 54. Cambridge, U.K.: Cambridge Univ. Press, 1999.

[25] Y.-C. Chen, “A tutorial on kernel density estimation and recent advances,”
Biostatist. Epidemiol., vol. 1, no. 1, pp. 161–187, 2017.

[26] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Berlin, Germany: Springer, 2003, pp. 63–71.

[27] X. Yuan, S. Qi, Y. Wang, K. Wang, C. Yang, and L. Ye, “Quality
variable prediction for nonlinear dynamic industrial processes based on
temporal convolutional networks,” IEEE Sensors J., vol. 21, no. 18,
pp. 20493–20503, Sep. 2021.

[28] L. Feng, C. Zhao, and Y. Sun, “Dual attention-based encoder–decoder: A
customized sequence-to-sequence learning for soft sensor development,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3306–3317,
Aug. 2021.

[29] S. Li et al., “Enhancing the locality and breaking the memory bottleneck
of transformer on time series forecasting,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst., 2019, vol. 32, pp. 5243–5253.

[30] H. Zhou et al., “Informer: Beyond efficient transformer for long sequence
time-series forecasting,” in Proc. 35th AAAI Conf. Artif. Intell., AAAI 2021,
Virtual Conf., 2021, vol. 35, pp. 11106–11115.

[31] J. C. Butcher, Numerical Methods for Ordinary Differential Equations.
Hoboken, NJ, USA: Wiley, 2016.

[32] W. Sun, W. Xiong, H. Chen, R. Chiplunkar, and B. Huang, “A novel
CVAE-based sequential monte carlo framework for dynamic soft sensor
applications,” IEEE Trans. Ind. Informat., vol. 20, no. 3, pp. 3789–3800,
Mar. 2024.

[33] D. Yang, X. Peng, C. Jiang, X. Wu, S. X. Ding, and W. Zhong, “Trans-
ferable deep slow feature network with target feature attention for few-
shot time-series prediction,” IEEE Trans. Ind. Informat., vol. 20, no. 5,
pp. 7292–7302, May 2024.

[34] R. Xie, N. M. Jan, K. Hao, L. Chen, and B. Huang, “Supervised variational
autoencoders for soft sensor modeling with missing data,” IEEE Trans. Ind.
Informat., vol. 16, no. 4, pp. 2820–2828, Apr. 2020.

[35] C. Xu, S. Zhao, Y. Ma, B. Huang, F. Liu, and X. Luan, “Sensor fault
estimation in a probabilistic framework for industrial processes and its
applications,” IEEE Trans. Ind. Informat., vol. 18, no. 1, pp. 387–396,
Jan. 2022.

Zhichao Chen received the B.Eng. degree
in chemical engineering and technology from
School of Chemical Engineering and Technol-
ogy, Sun Yat-sen University, Zhuhai, China, in
2020. He is currently working toward the Ph.D.
degree in control science and engineering with
the State Key Laboratory of Industrial Control
Technology, College of Control Science and
Engineering, Zhejiang University, Hangzhou,
China.

His research interests include process data
analytics, both linear and nonlinear optimization, and variational meth-
ods.

Hao Wang (Student Member, IEEE) received
the B.Eng. degree in detection, guidance, and
control technology from the College of Aero-
nautics and Astronautics, Central South Uni-
versity, Changsha, China, in 2020. He is cur-
rently working toward the Ph.D. degree in elec-
tronic engineering with the College of Control
Science and Engineering, Zhejiang University,
Hangzhou, China.

His research interests include process moni-
toring and time-series analysis.

Guofei Chen received the B.Eng. degree in au-
tomation from Zhejiang University, Hangzhou,
China, in 2023. He is currently working toward
the Master of Science degree in robotics with
Robotics Institute, Carnegie Mellon University,
Pittsburgh, USA.

His research interests include optimization,
localization, and planning with application in mo-
bile robots.

Yiran Ma received the B.Eng. degree in au-
tomation from the School of Automation Sci-
ence and Engineering, South China University
of Technology, Guangzhou, China, in 2021. He
is currently working toward the Ph.D. degree in
control science and engineering with the State
Key Laboratory of Industrial Control Technology,
College of Control Science and Engineering,
Zhejiang University, Hangzhou, China.

His current research interests include ma-
chine learning, Bayesian methods, and their ap-

plications in industrial data-driven modeling.

Le Yao (Member, IEEE) received the B.Eng.
and M.Eng. degrees in automation from the
Department of Control Science and Engineer-
ing, Jiangnan University, Wuxi, China, in 2012
and 2015, respectively, and the Ph.D. degree
in automation from the Department of Control
Science and Engineering, Zhejiang University,
Hangzhou, China, in 2019.

He was a Post-Doctoral Research Fellow with
the State Key Laboratory of Industrial Control
Technology, College of Control Science and En-

gineering, Zhejiang University, from 2019 to 2022. From July 2023 to
September 2023, he was a Visiting Scholar with the Hong Kong Univer-
sity of Science and Technology, Hong Kong. He is currently an Associate
Professor with the School of Mathematics, Hangzhou Normal University,
Hangzhou. His research interests include industrial Big Data, process
monitoring, soft sensor, data-driven modeling, distributed computing,
process data analysis, and their industrial applications.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on October 10,2024 at 15:17:38 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.24963/ijcai.2023/759
https://dx.doi.org/10.24963/ijcai.2023/759


12 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Zhiqiang Ge (Senior Member, IEEE) received
the B.Eng. and Ph.D. degrees in automation
from Department of Control Science and Engi-
neering, Zhejiang University, Hangzhou, China,
in 2004 and 2009, respectively.

He is currently with the School of Mathe-
matics, Southeast University, Nanjing, China.
He was with Department of Chemical and
Biomolecular Engineering, Hong Kong Univer-
sity of Science Technology, Department of Con-
trol Science and Engineering, Zhejiang Univer-

sity, and Peng Cheng Laboratory from 2009 to 2024. His research
interests include industrial Big Data, process monitoring, soft sensor,
data-driven modeling, machine intelligence, and knowledge automation.

Dr. Ge was an Alexander von Humboldt Research Fellow with Univer-
sity of Duisburg-Essen during 2014 to 2017, and also a JSPS invitation
Fellow with Kyoto University during Jun. 2018 to Aug. 2018.

Zhihuan Song received the B.Eng. and M.Eng.
degrees in industrial automation from the Hefei
University of Technology, Anhui, China, in 1983
and 1986, respectively, and the Ph.D. degree in
industrial automation from Zhejiang University,
Hangzhou, China, in 1997.

His research interests include the modeling
and fault diagnosis of industrial processes, an-
alytics and applications of industrial Big Data,
and advanced process control technologies.

Since 1997, he has been with the Department
of Control Science and Engineering, Zhejiang University, where he was
first a Postdoctoral Research Fellow, then an Associate Professor, and
is currently a Professor. He has authored or coauthored more than 200
papers in journals and conference proceedings.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on October 10,2024 at 15:17:38 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


