
Search-Based Path Planning among Movable Obstacles

Zhongqiang Ren1, Bunyod Suvonov1, Guofei Chen2, Botao He3, Yijie Liao1, Cornelia Fermuller3, Ji Zhang2

Abstract— This paper investigates Path planning Among
Movable Obstacles (PAMO), which seeks a minimum cost
collision-free path among static obstacles from start to goal
while allowing the robot to push away movable obstacles (i.e.,
objects) along its path when needed. To develop planners that
are complete and optimal for PAMO, the planner has to search
a giant state space involving both the location of the robot as
well as the locations of the objects, which grows exponentially
with respect to the number of objects. The main idea in this
paper is that, only a small fraction of this giant state space
needs to be explored during planning as guided by a heuristic,
and most of the objects far away from the robot are intact,
which thus leads to runtime efficient algorithms. Based on this
idea, this paper introduces two PAMO formulations, i.e., bi-
objective and resource constrained problems in an occupancy
grid, and develops PAMO*, a search method with completeness
and solution optimality guarantees, to solve the two problems.
We then further extend PAMO* to hybrid-state PAMO* to plan
in continuous spaces with high-fidelity interaction between the
robot and the objects. Our results show that, PAMO* can often
find optimal solutions within a second in cluttered environments
with up to 400 objects.

I. INTRODUCTION

Path planning seeks a collision-free path from an initial
state to a goal state while avoiding collision among static
obstacles, which is of fundamental importance in robotics.
This paper considers a problem called Path planning Among
Movable Obstacles (PAMO) where obstacles consist of both
movable obstacles (i.e., objects) and static (non-movable)
obstacles, and the robot can interact with objects by pushing
them away when needed. PAMO seeks a minimum-cost start-
goal path for the robot where both the move and push actions
of the robot incur costs, and there is no requirement on the
ending poses of the objects. This problem was shown to be
NP-hard [5], [20], and the challenge is to determine not only
a start-goal path among static obstacles but also when and
where to interact with the objects.

The goal of this paper is to develop runtime efficient
planners for PAMO with completeness and solution opti-
mality guarantees. For this purpose, we formulate PAMO
problems as a search over a grid where robots and obstacles
are represented by grid cells, and develop A*-like planners
(Fig. 1). By doing so, the planner must search a giant state
space that includes both the location of the robot and the
locations of all objects, which thereby grows exponentially
with respect to the number of objects. However, we take the
view that, although the state space is huge, in practice, only a
small fraction of the state space needs to be explored during

The authors are at 1Shanghai Jiao Tong University in China (Corre-
spondence: zhongqiang.ren@sjtu.edu.cn), 2Carnegie Mellon University, PA,
15213, and 3University of Maryland, MD 20742.

Fig. 1: A motivating example and the grid-based formulation
of PAMO. (d) and (e) show two alternative solutions, trading
off arrival time for number of push.

planning as guided by a heuristic, and most of the objects
that are “far away” from the robot are intact, which thus
leads to runtime efficient algorithms.

Based on this idea, we first introduce a bi-objective PAMO
formulation, which requires minimizing the numbers of both
move and push actions simultaneously. Considering the move
and push actions as two independent dimensions has the
potential to avoid naively scalarizing two different types of
actions into a single objective. With multiple objectives, there
is often no single solution that optimizes all objectives at the
same time, and the problem thus seeks a set of Pareto-optimal
solutions, which is usually computationally heavy. We thus
introduce another resource-constrained formulation, which
seeks a shortest path while ensuring the number of push ac-
tions does not exceed a given limit. To address the problems,
we develop an approach called PAMO*, which leverages the
recent advances in multi-objective and resource-constrained
search [14], [15], and leads to algorithms that can find all
Pareto-optimal solutions for the bi-objective PAMO and an
optimal solution for the resource-constrained PAMO. Finally,
we seek to get rid of the grid representation by developing
Hybrid-state PAMO* (H-PAMO*), which combines PAMO*
with hybrid-state A* [6] and a robot-object interaction simu-
lator based on Box2D [1] to plan in continuous spaces with
high-fidelity, at the cost of losing completeness and solution
optimality guarantees.

We test PAMO* in various grid maps. The results show

that for the bi-objective problem, our planner can find Pareto-
optimal solutions unveiling different ways to interact with
the objects, trading off numbers of move and push. For the
resource constrained problem, our planner can often find
optimal solutions within a second in cluttered grids with
up to 400 objects. We also verify our H-PAMO* in office-
like and warehouse-like environments, and simulate the robot
motion in Unity3D, where H-PAMO* plans paths for a robot
with kinematic constraints amid rectangular objects that can
both translate and rotate.

A. Related Work

PAMO was formulated in different ways. When represent-
ing the workspace and obstacles using a grid, PushPush and
Push-1 problems are NP-hard [5]. With polygonal obstacles,
navigation among movable obstacles (NAMO) were pro-
posed and shown to be NP-hard [20]. NAMO was studied in
environments that are known [17], partially known [12], and
unknown [8], with search-based [17], sampling-based [18],
and learning-based [21] methods. This paper differs from
these work by considering multi-objective and resource-
constrained formulations of PAMO in a fully known grid,
and developing planners with completeness and solution
optimality guarantees.

Besides, box-pushing games, such as Sokoban, solve puz-
zles where an agent moves boxes (i.e., objects) from their
initial to goal positions in a grid by push. These games were
NP-hard [7] and has been addressed by heuristic search [10],
Monte-Carlo Tree Search [4], Q-learning [19], to name a few.
PAMO differs from these games since it seeks a start-goal
path for the robot while these games move the boxes without
imposing a goal location on the agent.

Other related work includes manipulation of multiple
objects [13], [16], objects rearrangement [11], etc, where
various more complicated interaction between the robot and
the objects are allowed other than solely push.

Multi-objective search and resource-constrained search are
two closely related topics, and a fundamental challenge in
these problems is to quickly check paths for dominance, i.e.,
compare the vector cost of these paths [3], [9], [14], [15].
This paper leverages these search algorithms [14], [15] to
solve the formulated PAMO problems.

II. PROBLEM FORMULATION

Let G = (V,E) denote a 2D occupancy grid that repre-
sents the workspace, where each cell v ∈ V has coordinates
v = (x, y) ∈ Z+ indicating the column and row indices of
the cell in the grid. The time dimension is discretized into
time steps. At any cell v = (x, y), the possible actions of the
robot move in one of the four cardinal directions and arrives
at one of the neighboring cells {(x+1, y), (x−1, y), (x, y+
1), (x, y − 1)}. Each action takes a time step. Let N(v)
denote the set of neighboring cells of v ∈ V . Each edge
e = (v1, v2) ∈ E indicates the corresponding movement
from cell v1 to another cell v2.

At any time, all cells in V are partitioned into three
subsets: free space Vfree, static obstacles Vso, and movable

obstacles Vmo, i.e., V = Vfree ∪ Vso ∪ Vmo. Movable
obstacles are also referred to as objects. Each cell v ∈ Vfree

is obstacle-free and can be occupied by the robot. Each cell
v ∈ Vso represents a static obstacle and cannot be occupied
by the robot at any time. Each cell v ∈ Vmo indicates an
object. An object v ∈ Vmo can be pushed by the robot to
an adjacent cell if all of the following conditions hold: (i)
the current cell vc occupied by the robot is next to v; (ii)
the robot takes an action to reach v; and (iii) the object can
be pushed into a neighboring cell v′ = v + (vc − v) that
is in free space (i.e., v′ ∈ Vfree). Note that, Condition (iii)
ensures an object cannot be pushed to v if v is occupied
by another object. When the robot is adjacent to an object
v ∈ Vmo and moves to cell v, the object at v is pushed in the
same direction as the robot simultaneously. In this case, the
robot action is counted as a push (as opposed to a move).
Each action, either move or push, takes a time unit.1

Let π(v1, vℓ) = (v1, v2, · · · , vℓ) denote a path, which is a
list of adjacent cells. Let g⃗(π) ∈ R2 denote the cost vector of
π, where the first element g1(π) is the arrival time at the last
cell in π (i.e., the total number of move and push), and the
second element is the number of push conducted along π.
Given two vectors a⃗ and b⃗ of the same length, a⃗ dominates
b⃗ if every element in a⃗ is no larger than the corresponding
element in b⃗, and there exists at least one element in a⃗ that
is less than the corresponding element in b⃗. Otherwise, a⃗ is
non-dominated by b⃗. Given a set of vectors B of the same
length, there exists a subset of vectors B∗ such that for every
vector a⃗ ∈ B, a⃗ is non-dominated by any other vector in B.
Such a set B∗ is called the Pareto-optimal front.

Let vs and vg denote the start and the goal cells of the
robot. Among all possible paths Π from vs to vg , let Π∗ ⊆
Π denote the Pareto-optimal set, which is the subset of all
paths whose cost vector is within the Pareto-optimal front.
A maximal subset of the Pareto-optimal set, where any two
paths in this subset do not have the same cost vector is called
a cost-unique Pareto-optimal set. This paper considers the
following two formulation.

Problem 1 (BO-PAMO): The Bi-Objective Path Planning
Among Movable Obstacles (BO-PAMO) seeks a cost-unique
Pareto-optimal set (of paths) from vs to vg .

Problem 2 (RC-PAMO): The Resource-Constrained Path
Planning Among Movable Obstacles (RC-PAMO) seeks a
path π from vs to vg such that g2(π) ≤ Kpush, where Kpush

is the maximum number of push the robot can conduct along
any path, and g1(π) reaches the minimum.

III. PAMO*

A. PAMO* Search

PAMO is the problem name while PAMO* (with *) is the
method name. Let m = |Vmo| denote the number of objects,
and let position vector p = (v1, v2, · · · , vm) denote the cells
occupied by all objects. Let s = (v, p) denote a search state,

1The problem formulation and our method can easily adapt to the case
where push takes a different amount of time than move. Push may take
more fuel than move and is thus considered as a different type of action.

where v ∈ Vfree is the cell occupied by the robot, and p is
an aforementioned position vector. In other words, the state
space of the search is S = G×G×· · ·×G = Gm+1, which
encodes the locations of both the robot and all objects.

Let so denote the initial state, where the robot is at vs
and all objects are at their original positions. Different from
conventional A*, where the search only needs to record one
optimal path π (via parent pointers) from so to any state s,
PAMO* have to store multiple non-dominated paths from
so to s and differentiate between these paths. To do so, let
l = (s, g⃗) denote a label, where s is a state as aforementioned
and g⃗ is the cost vector of a path from so to s. Labels are
compared based on their cost vectors and two labels are
non-dominated by each other if their cost vectors are non-
dominated by each other. We use s(l), g⃗(l) to denote the state
and the cost vector contained in l respectively. We use v(l)
to denote the cell occupied by the robot in state s(l).

Let F(s) denote the frontier set at state s, which is a set of
labels, where any pair of labels in F(s) are non-dominated
by each other. Similar to A*, let g⃗(s) denote the cost-to-
come, i.e., the cost vector of the path from so to s and let
h⃗(s) denote the heuristic vector of state s that estimates the
cost-to-go. Let f⃗(s) := g⃗(s) + h⃗(s) denote the f -vector of
state s, and let O denote an open list of states, which is a
priority queue that prioritize states based on their f -vectors
from the minimum to maximum in lexicographic order. Let
L∗ denote the set of labels representing solution paths that
are found during the search.

PAMO* (Alg. 1) begins by creating the initial label lo =
(so, g⃗ = 0⃗), which is added to O. The frontier set is
initialized as an empty set for any state. In a search iteration
(Line 4-18), a label l with the lexicographically minimum
f -vector in O is popped, and is then checked for pruning
(Line 6), which is elaborated later. If l is not pruned, l is
used to update the frontier set F(s), where l is compared
against any existing label l′ ∈ F(s). If l′ is dominated by
l, l′ is removed from F(s). Then, l is added to F(s). As a
result, F(s) always contains non-dominated labels.

After updating the frontier, PAMO* checks if l reaches the
goal (i.e., v(l) = vg). When solving RC-PAMO where only
one optimal path is required, PAMO* terminates if v(l) =
vg and the path corresponding to label l is guaranteed to
be optimal. When solving MO-PAMO where all cost-unique
Pareto-optimal paths are required, PAMO* skips the rest of
the current search iteration and continues with the next search
iteration if v(l) = vg . When solving MO-PAMO, PAMO*
terminates when O depletes, i.e., all states in O are popped
and are either expanded or pruned.

If label l does not reach the goal, then l is expanded by
finding successor states of s(l) (Line 13). Specifically, the
procedure GetSuccessor returns the set of all reachable states
from the given state s(l), where each of the successor states
update both the cell of the robot, and the cells of the objects
when any object is pushed by the robot. Then, for each of
the successor state s′, a corresponding label l′ = (s′, g⃗′) is
created, where g⃗′ = g⃗(l) + GetCost(s, s′) and the GetCost
function returns either a cost vector (1, 0) if the robot moves

Algorithm 1 PAMO*

1: lo ← (so, 0⃗), f⃗(lo)← 0⃗ + h⃗(so)
2: Add lo to OPEN
3: F(s)← ∅, ∀s ∈ S, L∗ ← ∅
4: while OPEN ̸= ∅ do
5: l← OPEN.pop()
6: if FrontierCheck(l) or SolutionCheck(l) then
7: continue ▷ Current iteration ends
8: UpdateFrontier(l)
9: if ReachGoal(l) then

10: Add l to L∗

11: break ▷ RC-PAMO*
12: (or continue) ▷ MO-PAMO*
13: for all s′ ∈ GetSuccessors(s(l)) do
14: l′ ← (s′, g⃗(l) + c⃗(s, s′))
15: if FrontierCheck(l′) or SolutionCheck(l′) then
16: continue ▷ Move to the next successor.
17: f⃗(l′)← g⃗(l′) + h⃗(s(l′)), parent(l′)← l
18: Add l′ to OPEN
19: return Reconstruct(L∗)

without pushing any object, or (1, 1) if the robot moves while
pushing an object. Afterwards, the new label l′ is checked
for pruning (Line 15). If l′ is not pruned, the f -vector and
the parent pointer related to l′ are updated and l′ is added
to O for future search.

At the end of the search, each label in L∗ represents a
solution path, which is reconstructed by iteratively tracking
the parent pointers, and the solution path(s) are returned.

B. Procedures in PAMO*

1) GetSuccessors: The procedure FrontierCheck in
PAMO* takes a state s = (v, p) and returns its successor
states. It considers all possible neighboring cells of the robot
N(v), and for each of them, there are three cases. First, the
robot moves to a free cell, which yields a successor state
s′ = (v′, p) where (v.v′) ∈ E and the position vector p
remains the same as in s. Second, the robot moves to a cell
that is a static obstacle, which is not a valid move and yields
no successor. Third, the robot moves to a cell that is occupied
by an object pk (the k-th element in the position vector p).
In this case, the procedure further predicts the motion of
the object pk and checks if the object can be pushed to an
adjacent free cell u. If so, a successor state s′ = (v′, p′) is
generated, where (v, v′) ∈ E and the position vector p′ is
updated by first copying p and then modifying pk to be u.
Otherwise (i.e., pk is pushed to a static obstacle or another
object), no successor state is generated.

2) Heuristic Computation: PAMO* calculates the heuris-
tic vectors as follows. PAMO* first runs a pre-processing
before the search starts, which invokes a Dijkstra search
backwards from vg to all other vertices in the grid while ig-
noring any objects. By doing so, for each cell v ∈ Vfree, we
know the distance d∗(v) to vg along a shortest path among
static obstacles. We then use (d∗(v), 0) as the heuristic vector
for any label l whose robot position is at v, ignoring object
positions. This heuristic is a lower bound on the true cost-
to-go from v to vg for the number of both move and push.

3) FrontierCheck: The procedure FrontierCheck in
PAMO* is the same when solving both RC-PAMO and MO-
PAMO, where a given label l is checked against any existing
label l′ ∈ F(s(l)) for dominance. If the cost vector g⃗(l′)
of any existing label l′ ∈ F(s(l)) is component-wise no
larger than g⃗(l), then l cannot lead to an optimal path and
should be pruned, and FrontierCheck returns true. Otherwise,
FrontierCheck returns false.

4) SolutionCheck: The procedure SolutionCheck is differ-
ent when solving RC-PAMO and MO-PAMO. When solving
MO-PAMO, SolutionCheck compares the f -vector of the
given label l against the g-vector of any existing label
l′ ∈ F(vg). Note that each l′ ∈ F(vg) represents a solution
path from vs to vg that is already found during the search,
and g⃗(l′) = f⃗(l′) since h⃗(l′) = 0. If g⃗(l′) is component-
wise no larger than g⃗(l), then l cannot be a Pareto-optimal
solution and should be pruned, and SolutionCheck returns
true. Otherwise, SolutionCheck returns false.

When solving RC-PAMO, SolutionCheck compares f2(l),
the second component of the f -vector of the given label l,
against Kpush the limit on the number of push actions. If
the limit is exceeded (f2(l) > Kpush), then l cannot be a
solution and is thus pruned, and SolutionCheck returns true.
Otherwise, SolutionCheck returns false.

C. Discussion

1) Implicit State Generation: The state space S is never
created explicitly, i.e., allocate the memory for each state
before the search starts. Instead, the state space is created
implicitly, i.e., the states and the frontier sets are created only
when the search generates the states. PAMO* only requires a
GetSuccessors procedure to create successors out of a given
state in S, and never requires the full knowledge of S.

2) Giant State Space: PAMO* has a small constant
branching factor, which is the number of successors returned
by GetSuccessors procedure. Although the states space S
is extremely large and grows exponentially with respect to
the number of objects. In practice, guided by the heuristic,
PAMO* often needs to explore only a small fraction of S
before finding the (Pareto-)optimal solution(s), even if there
are many objects. Intuitively, most of the objects that are far
away from the robot’s path from vs to vg are never touched,
and the corresponding element of them in the position vector
p are never changed during the search.

3) Global and Local Checks: Intuitively, FrontierCheck
can be regarded as a “local” check which compares a label
against the existing non-dominated label at the same state.
Correspondingly, SolutionCheck can be regarded as a global
check which compares a label against “global” information,
i.e., either the existing solution paths that have been found
or the resource limit.

4) Action Costs: In the problem formulation, both move
and push take a time unit. Our method PAMO* can easily
handle the case where push and move take different amount
of time, or more generally speaking, incur various types of
costs, as long as the costs can still be described by cost
vectors and are still additive. The only place to be modified

is Line 14 in Alg. 1 when calculating c⃗(s, s′) between two
states s and s′.

D. Properties

Let RC-PAMO* (and MO-PAMO*) denote the version
of PAMO* when using Alg. 1 to solve RC-PAMO prob-
lem (and MO-PAMO problem, respectively). The complete-
ness and solution optimality of PAMO* are inherited from
EMOA* [15] and ERCA* [14]. In particular, RC-PAMO*
(and MO-PAMO*) can be regarded as applying ERCA* (and
EMOA*) onto the new state space S with the new way of
successor generation. EMOA* is guaranteed to be complete
and able to find all cost-unique Pareto-optimal solutions for a
given graph with vector edge cost [15]. ERCA* is guaranteed
to be complete and can find a min-cost solution subject to
resource limits in a given graph where each edge incurs cost
and resource consumption [14]. As a result, we have the
following theorems.

Theorem 1: MO-PAMO* is complete and can find all
cost-unique Pareto-optimal solutions for MO-PAMO.

Theorem 2: RC-PAMO* is complete and can find an
optimal solution for RC-PAMO.

IV. HYBRID-STATE PAMO*

Based on PAMO*, we further develop Hybrid-state
PAMO* (H-PAMO*) by leveraging the idea in hybrid-state
A* [6] to plan the robot motion in continuous space and time,
handle kinematic constraints of robots, and consider more
detailed interaction between the robot and the objects. Same
as Hybrid-state A* for path planning in continuous space,
our H-PAMO* loses completeness and solution optimality
guarantees for PAMO in continuous space.

A. Environment and Robot

We consider a first order unicycle model, where the robot
pose is ξ = (x, y, θ) ∈ SE(2) and control is u = (v, ω) ∈
U where v is the linear velocity and ω is the angular
velocity, and (v, ω) are subject to control limits. The robot
satisfies the system dynamics ξ̇ = (ẋ, ẏ, θ̇) = fdyn(ξ, u) =
(v sin(θ), v cos(θ), ω). The workspace W is a bounded 2D
Euclidean space with a set of static rectangle obstacles Wobs.
In the free space Wfree = W\Wobs, there are rectangle
objects. A search state now includes both the pose of the
robot and the poses of all objects.

The robot-object interaction is described by a black-box
function fsim which takes (i) a state (i.e., the poses of the
robot and the objects), (iii) a control of the robot, and (iv) a
small amount of time dt, conducts a forward simulation and
returns the ending poses of the robot and the objects. Here,
fsim only simulates the poses of the robot and the objects,
and ignores the higher order terms (e.g. velocities).

B. H-PAMO* Search

H-PAMO* is similar to PAMO* with the following dif-
ferences. First, to simplify the presentation, H-PAMO* is
developed as a single-objective algorithm, where all actions
(either move or push) incur an action time, and H-PAMO*

seeks to minimize the arrival time at the goal. As a result, all
cost vectors g⃗, h⃗, f⃗ (Lines 1, 14, 17) becomes scalar values
and the transition cost c⃗ is now a scalar representing the
action time from one state to another. Second, H-PAMO*
plans in a continuous space, there is no notion of graphs or
cells. To compare and prune paths (FrontierCheck on Lines 6,
15 and UpdateFrontier on Line 8), H-PAMO* uniformly
discretizes the workspace into mutually exclusive cells of
size ∆x × ∆y × ∆θ, and every pose belongs to a unique
cell. The state space S is thus discretized into a grid Sg ,
where each cell is of size (∆x ×∆y ×∆θ)|Vmo|+1. When
two paths end with states that belong to the same cell in Sg ,
H-PAMO* only stores the cheaper path and prunes the other.
Here, Sg is never created explicitly and any cell in Sg is only
created when a state in that cell is generated. Third, since
H-PAMO* optimizes a single-objective, the arrival time, and
there is no limit on the number of push actions, there is
no SolutionCheck on Line 6, 15 in H-PAMO* any more.
Fourth, to get successors, H-PAMO* consider a finite set of
motion primitives, which are generated by sampling controls
from the control space U and running forward simulation
for each of the sampled control for a short amount of time
dt. When generating a successor, the interaction between
the robot and the objects needs to be considered. In our
implementation, we use Runge-Kutta 4th order method to
integrate the fdyn to simulate the robot motion given the
control, and use Box2D [1] to implement fsim to predict the
motion of the objects when pushed by the robot. Finally, H-
PAMO* terminates when the search finds a path that reaches
the goal pose within a given tolerance ϵgoal ∈ R3.

V. EXPERIMENTAL RESULTS

We test PAMO* in various grid maps from a public
dataset [2]. Each grid map has static obstacles of different
densities. We place objects Vmo randomly in the grid without
overlapping with static obstacles or start and goal positions.
We create 10 instances for each map, and the instances are
not guaranteed to be feasible due to the randomly located
objects. We set a 1 minute runtime limit for each instance.
All tests are conducted on a MacBook laptop with a M2 Pro
CPU and 16GB RAM.

We first test MO-PAMO* and RC-PAMO* (with Kpush =
∞) in a (fixed) 8x8 empty grid map with varying percentage
of movable obstacles 10% (|Vmo| = 6), 20% (|Vmo| = 12),
and 30% (|Vmo| = 19). We then fix the percentage of
movable obstacles to 10% and change the maps to a Random
32x32 (|Vmo| = 102), Room 32x32 (|Vmo| = 102), and
Random 64x64 (|Vmo| = 409). We report the runtime and
number of expansions (i.e., Alg. 1 reaches Line 13).

A. Results of PAMO*

As shown in Fig. 2, in the smaller Empty map, the increase
in the number of movable obstacles slightly slows down
the planning for both MO-PAMO* and RC-PAMO*. In the
larger maps with much more movable obstacles (Fig. 4),
the planning is slowed down obviously, where MO-PAMO*

Fig. 2: Runtime of MO-PAMO* and RC-PAMO* in Empty
8x8 grid map with varying percentage of objects.

Fig. 3: Numbers of expansion of MO-PAMO* and RC-
PAMO* in the Empty map with varying object percentage.

times out in many instances before finding the entire Pareto-
optimal front, while RC-PAMO* is still able to solve most
of the instances. This is expected since finding the entire
Pareto-optimal front is usually much harder than finding a
single optimal solution [14], [15].

Fig. 3 and 5 shows the number of expansions of MO-
PAMO* and RC-PAMO*. Similar trends as the runtime can
be observed for number of expansions. Besides, we observe
from Fig. 4 and 5 that, in Random 32x32 and Random 64x64,
as the map size and |Vmo| increases, the runtime for RC-
PAMO* increases while the number of expansion decreases.
The reason is, with a larger |Vmo|, each state has to encode
the position of more movable obstacles and the processing
time in each expansion increases correspondingly.

When considering the theoretic size of the entire state
space S, the number of expansion is usually much smaller
than the size of S. For example, in Empty 8x8 with |Vmo| =

Fig. 4: Runtime of MO-PAMO* and RC-PAMO* in three
grid maps Random 32x32, Room 32x32 and Random 64x64,
with 10% objects.

Fig. 5: Numbers of expansion of MO-PAMO* and RC-
PAMO* in three grid maps Random 32x32, Room 32x32
and Random 64x64, with 10% objects.

Fig. 6: Numbers of solutions found by MO-PAMO* within
the runtime limit, and two snapshots of solution paths of an
instance in Room 32x32.

12, the size of the state space is |S| = (8× 8)(1+12) ≈ 1023

while the number of expansions is usually less than 103

for MO-PAMO* and 102 for RC-PAMO*. It indicates that,
guided by the heuristic, PAMO* only need to explore a small
fraction of the state space to find optimal solutions.

Finally, we show the number of solutions found by MO-
PAMO* in Fig. 6. Within the time limit, the planner finds 1
or 2 solutions as shown by the average and median number,
while for some instances, the planner finds 3 or 4 solutions.
We pick an instance from Room 32x32 and shows the two
different paths found by MO-PAMO*. Fig. 6(a) shows a
longer path with no push action required, while Fig. 6(b)
shows a shorter path with 7 push actions. These results can
help determine which path to take based on the specific
robotic platform where the push action is expensive or not.

B. Results of H-PAMO*

As shown in Fig. 7, we test H-PAMO* in three maps of
sizes (a) 74x127 in an office, (b) 24x36 in part of an office,
and (c) 90x102 in a warehouse, with rectangular objects of
different sizes. The robot is a 1x1 square. The size of cells in
Sg for pruning is set to (0.2, 0.2, 0.4) and the set of controls

Fig. 7: Solution paths of H-PAMO* in three maps.

Fig. 8: Unity-Based Simulation of H-PAMO*.

used are (v, w) ∈ {(1.0, 0.5), (1.0,−0.5), (1.0, 0), (−0.2, 0),
(1.0, 0.25), (1.0,−0.25), (0, 0.5), (0,−0.5)}. Fig. 7 shows
the solution paths, the initial and ending pose of all objects.
On all three instances, H-PAMO* terminates within 10
seconds and finds paths of length (a) 117.10 (b) 28.89 (c)
106.75 respectively. Fig. 8 shows the simulated motion of
the robot for Fig. 7(a) in Unity3D.

VI. CONCLUSION AND FUTURE WORK

This paper investigates PAMO by formulating the prob-
lem as a multi-objective search and a resource constrained
search over a grid, and develop planners with completeness
and solution optimality guarantees. The results verify that,
although the state space is huge, in practice, only a small
fraction of the state space needs to be explored during
planning as guided by a heuristic, and most of the objects
that are far from the robot’s path are intact, which thus
leads to algorithms that are often runtime efficient. This
paper also seeks to get rid of the grid representation by
developing Hybrid-state PAMO* (H-PAMO*) to plan in
continuous spaces at the cost of losing completeness and
solution optimality guarantees. We plan to consider the
uncertainty of robot-object interaction in our future work.

REFERENCES

[1] https://box2d.org/.
[2] https://www.movingai.com/benchmarks/mapf/index.html.
[3] Saman Ahmadi, Guido Tack, Daniel Harabor, Philip Kilby, and Mahdi

Jalili. Enhanced methods for the weight constrained shortest path
problem. Networks, 2024.

[4] Mattia Crippa, Pier Luca Lanzi, and Fabio Marocchi. An analysis of
single-player monte carlo tree search performance in sokoban. Expert
Systems with Applications, 192:116224, 2022.

[5] Erik D Demaine, Martin L Demaine, and Joseph O’Rourke. Pushpush
and push-1 are np-hard in 2d. In Proceedings of the 12th Canadian
Conference on Computational Geometry, 2000.

[6] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James
Diebel. Path planning for autonomous vehicles in unknown semi-
structured environments. The international journal of robotics re-
search, 29(5):485–501, 2010.

[7] Dorit Dor and Uri Zwick. Sokoban and other motion planning
problems. Computational Geometry, 13(4):215–228, 1999.

[8] Botao He, Guofei Chen, Wenshan Wang, Ji Zhang, Cornelia Fermuller,
and Yiannis Aloimonos. Interactive-far: Interactive, fast and adaptable
routing for navigation among movable obstacles in complex unknown
environments. arXiv preprint arXiv:2404.07447, 2024.

[9] Carlos Hernández, William Yeoh, Jorge A Baier, Han Zhang, Luis
Suazo, Sven Koenig, and Oren Salzman. Simple and efficient bi-
objective search algorithms via fast dominance checks. Artificial
intelligence, 314:103807, 2023.

[10] Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing gen-
eral single-agent search methods using domain knowledge. Artificial
Intelligence, 129(1-2):219–251, 2001.

[11] Athanasios Krontiris and Kostas E Bekris. Dealing with difficult
instances of object rearrangement. In Robotics: Science and Systems,
volume 1123, 2015.

[12] Martin Levihn, Mike Stilman, and Henrik Christensen. Locally opti-
mal navigation among movable obstacles in unknown environments.
In 2014 IEEE-RAS International Conference on Humanoid Robots,
pages 86–91. IEEE, 2014.

[13] Zherong Pan, Andy Zeng, Yunzhu Li, Jingjin Yu, and Kris Hauser.
Algorithms and systems for manipulating multiple objects. IEEE
Transactions on Robotics, 39(1):2–20, 2023.

[14] Zhongqiang Ren, Zachary B. Rubinstein, Stephen F. Smith, Sivakumar
Rathinam, and Howie Choset. Erca*: A new approach for the resource
constrained shortest path problem. IEEE Transactions on Intelligent
Transportation Systems, 24(12):14994–15005, 2023.

[15] Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. Enhanced multi-objective A* using
balanced binary search trees. In Proceedings of the International
Symposium on Combinatorial Search, volume 15, pages 162–170,
2022.

[16] Dhruv Mauria Saxena, Muhammad Suhail Saleem, and Maxim
Likhachev. Manipulation planning among movable obstacles using
physics-based adaptive motion primitives. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 6570–6576,
2021.

[17] Mike Stilman and James Kuffner. Planning among movable obstacles
with artificial constraints. The International Journal of Robotics
Research, 27(11-12):1295–1307, 2008.

[18] Jur Van Den Berg, Mike Stilman, James Kuffner, Ming Lin, and
Dinesh Manocha. Path planning among movable obstacles: a proba-
bilistically complete approach. In Algorithmic Foundation of Robotics
VIII: Selected Contributions of the Eight International Workshop on
the Algorithmic Foundations of Robotics, pages 599–614. Springer,
2010.

[19] Ying Wang and Clarence W De Silva. Multi-robot box-pushing:
Single-agent q-learning vs. team q-learning. In 2006 IEEE/RSJ
international conference on intelligent robots and systems, pages
3694–3699. IEEE, 2006.

[20] Gordon Wilfong. Motion planning in the presence of movable obsta-
cles. In Proceedings of the fourth annual symposium on Computational
geometry, pages 279–288, 1988.

[21] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Ed-
mond Tchapmi, Alexander Toshev, Roberto Martı́n-Martı́n, and Silvio
Savarese. Interactive gibson benchmark: A benchmark for interactive
navigation in cluttered environments. IEEE Robotics and Automation
Letters, 5(2):713–720, 2020.

