
Air-FAR: Fast and Adaptable Routing for Aerial Navigation in
Large-scale Complex Unknown Environments

Botao He1, Guofei Chen2, Cornelia Fermuller1, Yiannis Aloimonos*1, and Ji Zhang2

①

①

②

②

③

③

④

⑤

④

⑥

⑤ ⑥

10mPolyhedral Map
Visibility Edges

Fig. 1: Illustration of real-world navigation in a large-scale complex unknown environment with a dead-end. Polyhedral map is marked
in yellow and visibility edges are marked in cyan. Robot path is marked in blue and trajectory is marked in rainbow. (1) The robot starts
with no prior map. It attempts to approach the goal directly. (2-3) With new sensor observations, the robot incrementally construct the 3D
visibility graph (V-graph) in real-time, and adaptively adjust its path on the updated graph. (4) With the ability to maintain a global graph
and perform global path search in real-time, the robot quickly find a path to escape from the dead-end. (5) With the proposed path search
and refinement method, our method enables the robot to fly over terrain, which standard V-graph path search methods cannot achieve. (6)
After constructing the 3D V-graph, the robot can directly find a near-optimal long-range path within milliseconds.

Abstract— This paper presents a novel method for real-
time 3D navigation in large-scale, complex environments using
a hierarchical 3D visibility graph (V-graph). The proposed
algorithm addresses the computational challenges of V-graph
construction and shortest path search on the graph simulta-
neously. By introducing hierarchical 3D V-graph construction
with heuristic visibility update, the 3D V-graph is constructed
in O(K ·n2logn) time, which guarantees real-time performance.
The proposed iterative divide-and-conquer path search method
can achieve near-optimal path solutions within the constraints
of real-time operations. The algorithm ensures efficient 3D V-
graph construction and path search. Extensive simulated and
real-world environments validated that our algorithm reduces
the travel time by 42%, achieves up to 24.8% higher trajectory
efficiency, and runs faster than most benchmarks by orders of
magnitude in complex environments. The code and developed
simulator have been open-sourced to facilitate future research.

I. INTRODUCTION

3D navigation in large-scale complex environments re-
mains a challenge. Search-based methods such as A* [1]
densely discretize the space and guarantee optimal paths,
but are computationally expensive to propagate on dense

1 Perception and Robotics Group, University of Maryland, MD 20742.
2 Robotics Institute, Carnegie Mellon University, PA 15213-3890.
Email: jyaloimo@umd.edu, zhangji@cmu.edu

OursStandard

3D V-graph
Construction

Time

Path Search On
3D V-graph

𝑂𝑂(𝑛𝑛3 log𝑛𝑛)
Visited vertex
Any vertex
Visibility edge

Shortest path
Result path

𝑂𝑂(𝐾𝐾𝑛𝑛2 log𝑛𝑛)

A B

C D

Fig. 2: Benefits of the proposed algorithm.

maps. Sampling-based methods, such as RRT*, are efficient
in high-dimensional spaces, but due to their probabilistic
sampling mechanism, the performance varies greatly depend-
ing on the environment and takes a long time to find a
feasible path in complex environments. Visibility graph(V-
graph)-based methods, by contrast, model the space sparsely
by polygonal maps and connecting only vertices on polygons
that are visible to each other. This sparse representation
improves path search speed and memory consumption in
orders of magnitude compared to its counterparts. Moreover,
it is deterministic, ensuring that a path can always be found



within a bounded time if it exists. In practice, the computa-
tion time remains under 20ms, even for paths exceeding 300
meters.

2D V-graph has proven its efficiency for 2D navigation in
cluttered unknown environments due to its sparsity and scal-
ability, however, extending V-graph-based navigation from
2D to 3D is non-trivial. Challenges arise in two aspects:
1) graph construction takes significantly more time because
of the increased complexity of three-dimensional spaces, as
shown in Fig. 2(A), and 2) motion planning on the graph
becomes NP-hard. Specifically, the optimal path cannot be
directly calculated by searching vertices alone since it may
pass through edges, as illustrated in Fig. 2(C).

This work addresses both challenges simultaneously. As
shown in Fig. 2(B, D), the advantage of our proposed method
is its ability to construct the 3D V-graph in real-time and
search for a near-optimal path while with real-time guarantee.
Two key ideas underpin the strength of our approach.

The first idea is hierarchical 3D V-graph construction
with heuristic visibility update. The 3D V-graph is updated
hierarchically at each data frame. While the hierarchical
structure and update mechanism aligns with our previous
work [2], the local-graph construction introduces a novel
approach. Instead of directly extending the 2D polygonal
map into a 3D polyhedral map, which would increase
computation by an order of magnitude and thus hinder its
real-time performance, we convert sensor data into a layered
polygon map and heuristically expand vertical connections
between layers. These vertical edges transform the layered
polygon map into a 3D polyhedral map, with visibility edges
connected using similar heuristics. The proposed method
offers several benefits: 1) heuristic visibility updates decrease
computation by an order of magnitude while maintaining
good connection density; 2) the layered graph representation
is compatible with the 2D V-graph developed in our previous
work [2], making our algorithm suitable for aerial-ground
collaborative navigation.

The second key idea is an iterative divide-and-conquer
approach to path searching. The graph’s sparsity enables
rapid search for an initial path, typically within 10ms for
paths over 500 meters. However, the initial path may be
low quality, as shown in Fig. 2(C), so sampling nodes on
edges is crucial for improvement. Direct sampling on the
3D V-graph is challenging due to the computational cost
of visibility updates, limiting the number of points that can
be sampled in real-time. Our method refines the initial path
iteratively by trying to connect non-consecutive waypoints
of the initial path with the shortest path on the graph. To
enhance efficiency, we divide the path into log(n) subsets for
heuristic sampling and re-compute the path after integrating
sampled points. This iterative process progressively improves
path quality. The benefits of this approach include: 1) con-
sistently finding an available initial path in real-time, which
is crucial for field applications; 2) enabling the robot to fly
over obstacles effectively; and 3) achieving near-optimal path
solutions within the constraints of real-time operations.

To validate the effectiveness and robustness of our algo-

rithm, we conducted comprehensive tests across 12 simulated
large-scale environments with varied complexity and sensor
configurations in our developed Autonomy Development
Environment. We detail the algorithm’s performance in two
representative scenarios in this paper. We also implemented
the algorithm in indoor and outdoor real-world experiments
using a custom quadrotor equipped with fully onboard sens-
ing and computing capabilities. Extensive experiments reveal
that our algorithm outperforms most benchmarks by orders of
magnitude, demonstrating enhanced effectiveness in various
settings, including indoor, outdoor, simulated, and real-world
environments.

We open-sourced the project, including the source code1

and the Autonomy Development Environment2, to facilitate
further research.

II. RELATED WORK

A. Search- or Sampling-based Path Search for 3D Naviga-
tion in unknown environments

Search-based planners like Dijkstra’s [3] and A* [1]
discretize space densely and guarantee optimal paths but are
computationally intensive for large, dense maps. Sampling-
based planners, such as RRT [4] and RRT* [5], handle high-
dimensional spaces well but lack guaranteed convergence
within a time limit and struggle with large, complex envi-
ronments or dynamic global map updates.

To mitigate these challenges, some approaches limit the
map size to a smaller local area without maintaining global
maps. For example, Zhou et al. [6] [7] used Hybrid A* [8]
in a 10m×10m×3m local map, while Ye et al. [9] applied
Kinodynamic RRT* [10] within a similar range. While these
methods achieve real-time performance, they are prone to
local minima, potentially trapping the robot if dead-ends
extend beyond the map’s boundaries.

Our method, using a sparse V-graph, significantly re-
duces time and memory complexity compared to search-
based algorithms. Our approach deterministically finds a path
within a 20ms time bound for distances over 300 meters.
By maintaining an incrementally updated global map, it is
fundamentally robust to the local minima.

B. V-graph-based Navigation

The V-graph has long been studied [11], but its application
in navigation is rare due to high computational costs [12].
Recently, Yang et al. [2] introduced a hierarchical V-graph to
reduce construction time, enabling real-time 2D navigation
in cluttered environments. However, 3D V-graph navigation
remains a challenge. Bygi et al. [13] proposed an algorithm
that constructs the 3D V-graph in O(n3 log n) time, Yang
et al. [2] extended their 2D V-graph to 3D using layered
polygons, both of them cannot satisfy real-time requirements
for navigation in complex environments. Furthermore, short-
est path search on the 3D V-graph is non-trivial, as it is an
NP-hard problem [14]. [15] proposed an optimization-based

1Air-FAR: github.com/Bottle101/Air-FAR
2Autonomy Dev. Env.:

www.far-planner.com/development-environment

https://github.com/Bottle101/Air-FAR
https://github.com/Bottle101/Air-FAR
https://github.com/Bottle101/Air-FAR


real-time path planning and control algorithm for 3D V-
graphs, but it sacrifices planning horizon for speed, limiting
its applicability for long-range navigation tasks.

Our method address both challenges simultaneously. We
proposed our heuristic 3D V-graph construction algorithm to
build and update the 3D V-graph in real-time. The proposed
iterative divide-and-conquer method allows our algorithm
search for a near-optimal path while with real-time guarantee.

III. PROBLEM DEFINITION

Our problem is divided into two sub-problems: 3D V-
graph incremental construction and explorative-optimal path
search on the 3D V-graph.

For the first sub-problem, define Q ⊂ R3 as the workspace
for the robot to navigate. Let S ⊂ Q be the perceived
sensor data. We propose a new 3D visibility graph (V-graph)
representation, denoted as G ⊂ Q, constructed from S.

Problem 1: During navigation in unknown environments,
given S, fit the point cloud with polyhedra and incrementally
construct the global 3D V-graph in real time.

Problem 1 is solved in two steps. First, we hierarchically
separate the G into two layers: local layer Glocal and global
layer Gglobal, so G = {Gilocal ⊂ Q,Giglobal ⊂ Q|i ∈ Z+}.
At each sensor frame, we only construct Glocal from S and
merge into Gglobal. Second, we build the local polyhedral
map using layered polygons and heuristically assess visi-
bility between vertices to balance connection density and
computational efficiency.

For the second sub-problem, we first define the concept
explorative-optimal. Since the global optimal path cannot be
directly computed in an unknown environment, the current
optimal path can only be searched on the currently available
map during navigation or exploration. Thus, explorative-
optimal is defined as follows:

Definition 1: A path is called explorative-optimal if and
only if it satisfies certain optimality criteria under the current
environmental observations.

Then, we define a path that has a set of waypoints P =
{pi ∈ Q|i ∈ Z+}. The problem is then defined as an optimal
path search problem on 3D V-graph:

Problem 2: Given the current G, robot position probot ∈
Q and goal point pgoal ∈ Q, find the explorative-optimal
path P∗ between probot and pgoal on G.

Problem 2 is solved repetitively in each planning cycle.
During navigation, we re-plan the path on the updated G
until arriving at pgoal. We propose our iterative divide-
and-conquer path search method to achieve an asymptotic
explorative-optimal path search, which also has probabilistic
guarantees of completeness and optimality. We experimen-
tally validated that our algorithm can achieve near-optimal
within 2 iterations under the promise of real-time perfor-
mance.

IV. 3D V-GRAPH CONSTRUCTION AND UPDATE

A. Polyhedron Extraction

The 3D V-graph uses polyhedra to represent 3D obstacles.
The polyhedra map proposed in this paper, denoted as P̂ =
{P̂i

local ⊂ Q, P̂i
global ⊂ Q|i ∈ Z+}, is derived from layered

polygon map, which is denoted as Play = {Pi
lay ⊂ Q|i ∈

Z+}. As illustrated in Fig. 3(A), to calculate Play, we first
slice the 3D sensor data S into multiple pieces based on a
given resolution, inflate them based on the robot dimension,
and register them to 2-D image planes. For each slice of data,
we extract enclosed polygons using the methods in [16] and
[17], this step is developed from our previous work [2].

The next step involves connecting the vertical contours.
As shown in Fig. 3(B) and Alg. 1, for each vertex v ∈
{P1

lay, ...,P
i−1
lay }, we search for its K nearest neighbors on

the layer above within a radius and connect them to form
vertical contour connections. This process enables the con-
struction of a polyhedral map that represents 3D obstacles.
The visibility check algorithm further utilizes the vertical
contours to enhance its efficiency. Note that the polyhedra
we construct do not need to be fully enclosed.

B. Local 3D V-graph Construction

The local 3D V-graph is built in real-time at each sensor
frame. To balance between efficiency and connection density,
we introduce our heuristic 3D V-graph construction algo-
rithm. As shown in Fig. 3(C) and the second part of the Alg.
1, we first check visibility for all same-layer vertices, this
step has the time complexity of O(n2logn) and was proven
to promise real-time in [2]. Instead of directly checking
visibility for inter-layer vertices, which would result in a time
complexity of O(n3 log n) [13] and is impractical for real-
time computation, we heuristically check the visibility for
all vertically connected vertices of each same-layer visible
vertex. The rationale behind this approach is that if part
of an object is already visible, it is more likely to be in
the foreground, making other parts of the same polyhedron
more likely to be visible as well. In this way, the total time
complexity can be reduced to O(K · n2 log n). The notation
and analysis are detailed in Sect. IV-D. We enhance graph
connectivity and mitigate sensor noise by randomly sampling
a few vertices Vsample during each planning cycle, typically
fewer than five points. The time required for this step is
minimal. Through extensive evaluation, we found that our
algorithm can be executed in real-time while maintaining
good graph connectivity.

C. Two-layer Graph Update

The graph update method aligns with the approach out-
lined in our previous work [2, 18]. with details available
therein. Briefly, during each planning cycle, we compare
Glocal with Gglobal. For each vertex in Glocal, we update its
position in Ggloal if it has a corresponding vertex there; if
not, we introduce it as a new vertex. Conversely, if a vertex
exists in Gglobal but is absent in the corresponding location



𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝑺𝑺 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍 �𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 �𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍

CBA

Fig. 3: Illustration of the steps to heuristically construct the 3D V-graph.

Algorithm 1: Local 3D V-graph Construction
Input : Layered polygon map: Play

Output: Local V-graph: Glocal
1 ▷ Polyhedron map construction
2 Add Pi

lay to Ptop

3 for each vertex v ∈ {P1
lay, ...,P

i−1
lay } do

4 Vvert ← KNNRadiusSearch(Pk+1
lay )

5 Add Vvert as vertical contour connections to v
6 end
7 Add Play ∪ Vvert to P̂local

8 ▷ Connect visibility edges
9 for each vertex v ∈ Play do

10 Add CheckV isibility(v,Pi
lay) to Vvisible

11 let Q be a queue, Q.enqueue(Vvisible)
12 while Q is not empty do
13 vvis ← Q.dequeue()
14 Vvert ← getV erticalConnections(vvis)
15 Add CheckV isibility(v,Vvert) to Vvisible
16 Q.enqueue(Vvert)
17 end
18 Add Vvisible to Glocal
19 end
20 if Within time budget then
21 Vsample ← Sample N points on Glocal
22 Check visibility and add Vsample to Glocal
23 return Glocal;

of Glocal, we classify it as a disappeared vertex. It will be
removed from Gglobal if it remains absent for several frames.

D. Computational Complexity Analysis

Assume vertices are evenly distributed among layers, and
each layer has vertex number nl. The relationship between nl

and total number of vertices n can be expressed as nl =
n
m ,

where m is the number of layers.

Theorem 1: Each vertex takes at most O(k ·n log n) time
to update its visibility in P̂local.

It is proven that one vertex takes O(n log n) time to
connect its 2D visibility edges with other same-layer vertices.
In the 3D case, for any inter-layer vertex pair, a visibility
check needs to be performed on all layers between them. For
example, for vertex pair ⟨v1,v3⟩, where the index indicates
their layer id, we not only need to do an intersection check on
layer 1, but also need to check layer 2 since we do not want
the robot to collide with intermediate layers too. Therefore,
assuming each vertex has k vertical contour connections, and

all k connections are evenly distributed among m layers, the
time consumption to check vertical contour connections is:

m∑
i=1

i · k
m
nl log nl =

k(m+ 1)

4
nl log nl. (1)

Therefore, the time consumption to update the visibility is

Tsingle = nl log nl +
k(m+ 1)

4
nl log nl

= (
1

m
+

k

4
· m+ 1

m
)n log n

(2)

Because m is constant and the time complexity changes
linearly with k, Eq. 2 can be expressed as O(k · n log n).

Theorem 2: Time complexity of Alg. 1 is O(K ·n2 log n).

Proof: Define the total vertex number versus the visible
vertex number for a given vertex is λ. In this way, For a
single layer of the graph, we need to perform visibility check
nl times for same-layer vertices and nl

λ times for inter-layer
vertices. The time consumption to update the visibility edges
of the whole V-graph is

T = (
1

m
+K · m+ 1

m
)n2 log n, (3)

where K = k
4λ .

Another part of Alg. 1 is the KNN search, taking On log n
time to construct a KD-tree [19] and another On log n time
to query all vertices, which is ignitable compared with T .
Therefore, the final time complexity is O(K · n2 log n). In
practice, the λ is around 10, making the algorithm efficient
for real-time computing.

V. ITERATIVE DIVIDE-AND-CONQUER PATH SEARCH

After constructing the 3D V-graph, searching for an
explorative-optimal path within the vertex domain becomes
straightforward. However, as previously discussed, the op-
timal waypoint might be located on an edge. To compute
the explorative-optimal path within the graph domain, we
introduce our iterative divide-and-conquer path search algo-
rithm, which can search for near explorative-optimal paths
under the promise of real-time.

Define Pinit = {pi
init ∈ Q|i ∈ Z+} as the initial path

search result on vertex-domain. As shown in Fig. 4 and
Alg. 2, given Pinit, we decompose it into two two sub-
sets {Podd,Peven} ⊂ Pinit. We re-connect consequent way-
points for each sub-set as new path segments and calculate its



Next iteration
O

rig
in

al
In

se
rte

d

Path Re-search

Remove even vertices Remove odd vertices

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟏𝟏 𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝟐𝟐 𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊−𝟐𝟐

𝑷𝑷𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝑷𝑷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊

Fig. 4: Illustration for the proposed iterative divide-and-conquer
path search algorithm.

intersection with the graph. The intersection points Pinsert,
marked as green in Fig. 4, are saved, and their visibility
with other vertices is calculated. We only check intersections
with the top layer contours because, as discussed in the
Introduction, the more optimal paths will likely fly over
obstacles. The problem is repeatedly divided into two sub-
problems until only one waypoint from Pinit remains. After
expanding all sub-problems, we merge all inserted waypoints
with the initial waypoints and re-search the path to compute
a refined path. This refined path is then used as the input
for the next iteration. We iteratively solve the problem until
convergence is achieved or the time limit is reached.

A. Admissibility, Completeness and Optimality

Every time we check intersection between two non-
consecutive waypoints ⟨pi

init,p
j
init⟩ and P̂global, we try to

connect pi
init and pj

init with shortest path on the graph,
therefore the heuristic is admissible. Benefited from the di-
rect sampling part in Alg. 1, the completeness and asymptotic
explorative optimal can be guaranteed in principle. How-
ever, in practical applications, optimality and completeness
are often compromised to guarantee real-time performance.
Extensive experiments validated that the path obtained after
one or two iterations is near-optimal and sufficiently effective
for the robot to execute.

VI. EXPERIMENTS

A. Experiment Setup

1) Simulation: Our Autonomy Development Environment
for this project features 29 multi-scale scenes with varied
complexity, supporting both ground and aerial navigation.
We test our algorithm in two complex environments depicted
in Fig. 5(A): a 140×130m indoor garage and a 300×300m
outdoor factory. The robot utilizes LiDar for navigation.
The framework operates on a laptop with an i7-12700H

Algorithm 2: One Iteration of the Path Search
Input : Initial Path: Pinit

Output: Refined Path: Prefine

1 let Q be a queue, Q.enqueue(Pinit) ▷ Divide
2 while Q is not empty and within time budget do
3 P← Q.dequeue()
4 Podd ← RemoveEvenNodes(P)
5 Peven ← RemoveOddNodes(P)
6 for each waypoint pair ⟨pi,pi+1⟩ ∈ Podd do
7 Pintersect ← Intersection(⟨pi,pi+1⟩,Ptop)

8 CheckV isibility(Pintersect, P̂global)
9 Add Pintersect to Pinsert

10 end
11 if The size of Podd\{probot,pgoal} > 1 then
12 Q.enqueue(Podd)
13 ▷ Apply the same operation for Peven

14 end
15 Pcombine ←Merge(Pinsert,Pinit) ▷ Conquer
16 Prefine ← path re-search on Pcombine using [3]
17 Use Prefine for the next iteration

Fig. 5: Experiment setup. The left column shows the simulated
drone with a Lidar, overview of the garage and the factory. The
right column shows the customized quadroter with a depth camera,
overview of the lab and the outdoor space.

CPU, updating the 3D V-graph at 7.5Hz and conducting path
searches with each update. We set the spatial resolution at
0.15m, and the local layer covers a 60× 60m area with the
vehicle in the center.

2) Real-world: We validated our algorithm in real-world
settings using a custom quadrotor equipped with a Realsense
D455 depth camera and an Intel i5-1135G7 processor. The
first test environment was a complex 20×15m indoor area,
used for the 3D V-graph testing construction and update. The
second environment, a 45×20m outdoor space with a dead-
end, served for comprehensive system-level testing.

B. 3D V-graph Construction, Computational and Path Effi-
ciency Comparison

To comprehensively demonstrate the efficiency and effec-
tiveness of our algorithm, we compared graph construction
time, path search time, and path quality across various envi-



30m Air-FAR

FAR

A*

Fig. 6: The resulting map and trajectories of system-level
experiment in Garage.

100m Air-FAR A*

Fig. 7: The resulting map and trajectories of system-level
experiment in Factory.

TABLE I: Average Search Time in [ms]

Env Garage Factory
Path Len. (m) 110 323

Search
Time (ms) Initial Path Refined Initial Path Refined

A* 272.7 - 3.5e4 -
RRT* >1e4 - 6.4e3 3.0e4
BIT* 40.2 275.2 4.6e3 9.0e3
FAR 12.8 - - -
Ours 7.1 18.9 15.5 61.8

ronments. We evaluated our method against several bench-
marks: the search method A*, the sampling-based RRT* and
BIT* [20], and FAR [2]. BIT* represents the state-of-the-art
in sampling-based methods. The ground truth (GT) path is
provided by A*. For RRT* and BIT*, we noted the refined
path time when it was within 1.05 times the GT path length.

As shown in Table I, the proposed method can update the
3D V-graph in real-time, and outperforms all other methods
by orders of magnitude in search time for both the initial path
and refining to near optimal. As shown in Table III, though
cannot promise optimal, our algorithm can provide a near-
optimal solution in real-time, which is crucial for navigation
in unknown environments.

C. System-level Comparison

To illustrate the reliability of our algorithm in field ap-
plication scenarios, we compare the systematic navigation
performance with A* based Ego-Planner [21] and FAR-
Planner [2]. Ego-planner is a widely adopted grid-map-based
planning framework, we enlarge its map size to equip it with
global path search ability to some extent. Although cannot
run in real-time, FAR-Planner is regarded as the first 2D V-
graph based work that is compatible to 3D navigation by
using multi-layer polygons. We selected the garage and the
factory for system testing, and travel distance and time as
evaluation metrics.

TABLE II: Average 3D V-graph Update Time in [ms]

Env Garage Factory Lab
Sensor Lidar Lidar DepthCam
FAR 406.4 4651.5 382.3
Ours 81.6 153.6 112.7

TABLE III: Average Path Quality in [%]

Env Garage Factory
Path Len. (m) 110 323

Path
Quality (%) Initial Path Refined Initial Path Refined

A* 100 100 100 100
RRT* - - 75.5 76.1
BIT* 50.2 96.9 88.0 95.3
FAR 98.1 98.1 - -
Ours 97.3 97.3 95.8 97.6

As shown in Table IV, Fig. 6 and 7, the A*-based system
travels significantly longer despite its optimality, because
encountering a dead end causes extensive node expansion
and slows the search. It performs better in the factory,
where A*’s heuristic aids graph search in a well-connected
space. For Far-Planner, the system’s travel distance and
time increase as it waits for graph updates. In contrast, our
proposed method continuously updates graphs and performs
efficient path searches, ensuring safe and smooth navigation.

D. Real-world Experiment

We conducted real-world experiments to demonstrate the
robustness and adaptability of our system. As illustrated in
Fig. 1 and Table. V, our algorithm shows robust performance
when navigating through the large-scale complex unknown
environments with a dead-end. The system consistently
achieves real-time performance in real-world settings using
onboard computing.

TABLE IV: System-level Comparison

Env. Garage Factory

Metrics Travel
Dis. (m) Time (s) Travel

Dis. (m) Time (s)

A* 703.8 334.7 1289.6 682.4
FAR 648.4 341.7 - -
Ours 529.6 195.7 973.5 483.9

TABLE V: Real-world Experiment Metrics

Graph
Update (s)

Path
Search (s) Travel Time (s) Traj. Len. (m)

0.127 0.0053 194 100.8



REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[2] F. Yang, C. Cao, H. Zhu, J. Oh, and J. Zhang, “Far planner: Fast,
attemptable route planner using dynamic visibility update,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 9–16.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[4] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14744621

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[6] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient
quadrotor trajectory generation for fast autonomous flight,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[7] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-
aware trajectory replanning for quadrotor fast flight,” IEEE Transac-
tions on Robotics, vol. 37, no. 6, pp. 1992–2009, 2021.

[8] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor, vol.
1001, no. 48105, pp. 18–80, 2008.

[9] H. Ye, X. Zhou, Z. Wang, C. Xu, J. Chu, and F. Gao, “Tgk-planner:
An efficient topology guided kinodynamic planner for autonomous
quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
494–501, 2020.

[10] D. J. Webb and J. Van Den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2013
IEEE international conference on robotics and automation. IEEE,
2013, pp. 5054–5061.

[11] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Communications of
the ACM, vol. 22, no. 10, pp. 560–570, 1979.

[12] J. Kitzinger and B. Moret, “The visibility graph among polygonal
obstacles: a comparison of algorithms,” Ph.D. dissertation, University
of New Mexico, 2003.

[13] M. N. Bygi and M. Ghodsi, “3d visibility graph,” Computational
Science and its Applications, Kuala Lampur, 2007.

[14] K. Jiang, L. Seneviratne, and S. Earles, “Finding the 3d shortest path
with visibility graph and minimum potential energy,” in Proceedings
of 1993 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’93), vol. 1. IEEE, 1993, pp. 679–684.

[15] Y. You, C. Cai, and Y. Wu, “3d visibility graph based motion planning
and control,” in Proceedings of the 5th International Conference on
Robotics and Artificial Intelligence, 2019, pp. 48–53.

[16] S. Suzuki et al., “Topological structural analysis of digitized binary
images by border following,” Computer vision, graphics, and image
processing, vol. 30, no. 1, pp. 32–46, 1985.

[17] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of
the number of points required to represent a digitized line or its
caricature,” Cartographica: the international journal for geographic
information and geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[18] B. He, G. Chen, W. Wang, J. Zhang, C. Fermuller, and Y. Aloimonos,
“Interactive-far: Interactive, fast and adaptable routing for navigation
among movable obstacles in complex unknown environments,” arXiv
preprint arXiv:2404.07447, 2024.

[19] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in o (n log n),” in 2006 IEEE Symposium on Interactive
Ray Tracing. IEEE, 2006, pp. 61–69.

[20] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered envi-
ronments,” Robotics and Autonomous Systems, vol. 68, pp. 1–11, 2015.

[21] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully
autonomous and decentralized quadrotor swarm system in cluttered
environments,” in 2021 IEEE international conference on robotics and
automation (ICRA). IEEE, 2021, pp. 4101–4107.

https://api.semanticscholar.org/CorpusID:14744621

	Introduction
	Related Work
	Search- or Sampling-based Path Search for 3D Navigation in unknown environments
	V-graph-based Navigation

	Problem Definition
	3D V-graph Construction and Update
	Polyhedron Extraction
	Local 3D V-graph Construction
	Two-layer Graph Update
	Computational Complexity Analysis

	Iterative Divide-and-Conquer Path Search
	Admissibility, Completeness and Optimality

	Experiments
	Experiment Setup
	Simulation
	Real-world

	3D V-graph Construction, Computational and Path Efficiency Comparison
	System-level Comparison
	Real-world Experiment

	References

